001     943316
005     20240712084519.0
024 7 _ |a 10.1002/solr.202200857
|2 doi
024 7 _ |a 2128/33996
|2 Handle
024 7 _ |a WOS:000898333400001
|2 WOS
037 _ _ |a FZJ-2023-00922
082 _ _ |a 600
100 1 _ |a Shcherbachenko, Sergey
|0 P:(DE-Juel1)188562
|b 0
245 _ _ |a Efficient Power Coupling in Directly Connected Photovoltaic‐Battery Module
260 _ _ |a Weinheim
|c 2023
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1677491611_26873
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Due to the intermittent nature of solar irradiance and the temporal mismatch between solar power generation and consumption profiles, the combination of photovoltaic (PV) devices with energy storage is essential. The maximum power point tracking (MPPT) devices are commonly used for the connection of PV to electrochemical storage and load, ensuring power matching and providing flexibility in system design. Herein, the usability of direct PV-battery coupling as an alternative to MPPT under realistically varied battery state of charge (SoC), irradiance, temperature of the PV module, and applied load is investigated. A stable power coupling factor above 90% is demonstrated between a silicon heterojunction solar module and Li-ion battery in the whole range of measured SoC (12.5–75%) and a wide range of load power. The dependence of power coupling on temperature and irradiance is calculated and compared to the power generation profile of a PV plant installed in southern Germany. In the region of highest power generation, the direct connection provides coupling efficiencies above 95%, reaching 100%, for the usable range of battery SoC. These results show that direct PV-to-battery coupling is feasible for a variety of practical applications and scales.
536 _ _ |a 1214 - Modules, stability, performance and specific applications (POF4-121)
|0 G:(DE-HGF)POF4-1214
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Astakhov, Oleksandr
|0 P:(DE-Juel1)130212
|b 1
|e Corresponding author
700 1 _ |a Chime, Ugochi
|0 P:(DE-Juel1)184652
|b 2
700 1 _ |a Kin, Li-Chung
|0 P:(DE-Juel1)176607
|b 3
700 1 _ |a Ding, Kaining
|0 P:(DE-Juel1)130233
|b 4
700 1 _ |a Pieters, Bart
|0 P:(DE-Juel1)130284
|b 5
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)130285
|b 6
700 1 _ |a Figgemeier, Egbert
|0 P:(DE-Juel1)165182
|b 7
700 1 _ |a Merdzhanova, Tsvetelina
|0 P:(DE-Juel1)130268
|b 8
773 _ _ |a 10.1002/solr.202200857
|g p. 2200857 -
|0 PERI:(DE-600)2882014-9
|n 3
|p 2200857 -
|t Solar RRL
|v 7
|y 2023
|x 2367-198X
856 4 _ |u https://juser.fz-juelich.de/record/943316/files/S.Shcherbashenko%20%20etal.%20Solar%20RRL%202022.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:943316
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188562
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130212
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)184652
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)176607
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130233
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130284
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130285
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)165182
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130268
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1214
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-16
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-16
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOL RRL : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SOL RRL : 2022
|d 2023-10-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21