| Home > Publications database > Problem-size-independent angles for a Grover-driven quantum approximate optimization algorithm > print |
| 001 | 943317 | ||
| 005 | 20230929112508.0 | ||
| 024 | 7 | _ | |a 10.1103/PhysRevA.107.012412 |2 doi |
| 024 | 7 | _ | |a 2469-9926 |2 ISSN |
| 024 | 7 | _ | |a 2469-9942 |2 ISSN |
| 024 | 7 | _ | |a 0556-2791 |2 ISSN |
| 024 | 7 | _ | |a 1050-2947 |2 ISSN |
| 024 | 7 | _ | |a 1094-1622 |2 ISSN |
| 024 | 7 | _ | |a 1538-4446 |2 ISSN |
| 024 | 7 | _ | |a 2469-9934 |2 ISSN |
| 024 | 7 | _ | |a 2128/33780 |2 Handle |
| 024 | 7 | _ | |a WOS:000975559000001 |2 WOS |
| 037 | _ | _ | |a FZJ-2023-00923 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Headley, David |0 P:(DE-Juel1)188131 |b 0 |e Corresponding author |u fzj |
| 245 | _ | _ | |a Problem-size-independent angles for a Grover-driven quantum approximate optimization algorithm |
| 260 | _ | _ | |a Woodbury, NY |c 2023 |b Inst. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1674639547_21125 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The quantum approximate optimization algorithm (QAOA) requires that circuit parameters are determined that allow one to sample from high-quality solutions to combinatorial optimization problems. Such parameters can be obtained using either costly outer-loop optimization procedures and repeated calls to a quantum computer or, alternatively, via analytical means. In this work, we consider a context in which one knows a probability density function describing how the objective function of a combinatorial optimization problem is distributed. We show that, if one knows this distribution, then the expected value of strings, sampled by measuring a Grover-driven, QAOA-prepared state, can be calculated independently of the size of the problem in question. By optimizing this quantity, optimal circuit parameters for average-case problems can be obtained on a classical computer. Such calculations can help deliver insights into the performance of and predictability of angles in QAOA in the limit of large problem sizes, in particular, for the number partitioning problem. |
| 536 | _ | _ | |a 5214 - Quantum State Preparation and Control (POF4-521) |0 G:(DE-HGF)POF4-5214 |c POF4-521 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Wilhelm-Mauch, Frank |0 P:(DE-Juel1)184630 |b 1 |u fzj |
| 773 | _ | _ | |a 10.1103/PhysRevA.107.012412 |g Vol. 107, no. 1, p. 012412 |0 PERI:(DE-600)2844156-4 |n 1 |p 012412 |t Physical review / A |v 107 |y 2023 |x 2469-9926 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/943317/files/PhysRevA.107.012412.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:943317 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)188131 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)184630 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5214 |x 0 |
| 914 | 1 | _ | |y 2023 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-23 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2022-11-23 |
| 915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-23 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV A : 2022 |d 2023-08-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-29 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-08-29 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-12-20200716 |k PGI-12 |l Quantum Computing Analytics |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-12-20200716 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|