Hauptseite > Publikationsdatenbank > Flow Characteristics of Fibrous Gas Diffusion Layers Using Machine Learning Methods > print |
001 | 943321 | ||
005 | 20240712113247.0 | ||
024 | 7 | _ | |a 10.3390/app122312193 |2 doi |
024 | 7 | _ | |a 2128/33791 |2 Handle |
024 | 7 | _ | |a WOS:000912433600001 |2 WOS |
037 | _ | _ | |a FZJ-2023-00927 |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Froning, Dieter |0 P:(DE-Juel1)5106 |b 0 |e Corresponding author |
245 | _ | _ | |a Flow Characteristics of Fibrous Gas Diffusion Layers Using Machine Learning Methods |
260 | _ | _ | |a Basel |c 2022 |b MDPI |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1674746372_19833 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The material characteristics of gas diffusion layers are relevant for the efficient operation of polymer electrolyte fuel cells. The current state-of-the-art calculates these using transport simulations based on their micro-structures, either reconstructed or generated by means of stochastic geometry models. Such transport simulations often require high computational resources. To support material characterization using artificial-intelligence-based methods, in this study, a convolutional neural network was developed. It was trained with results from previous transport simulations and validated using five-fold cross-validation. The neural network enables the permeability of paper-type gas diffusion layers to be predicted. A stochastic arrangement of the fibers, four types of binder distributions, and compression of up to 50% are also considered. The binder type and compression level were features inherent to the material but were not the subject of the training. In this regard, they can be seen as features hidden from the training process. Nevertheless, these characteristics were reproduced with the proposed machine learning model. With a trained machine learning model, the prediction of permeability can be performed on a standard computer. |
536 | _ | _ | |a 1231 - Electrochemistry for Hydrogen (POF4-123) |0 G:(DE-HGF)POF4-1231 |c POF4-123 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Wirtz, Jannik |0 P:(DE-Juel1)176619 |b 1 |u fzj |
700 | 1 | _ | |a Hoppe, Eugen |0 P:(DE-Juel1)171318 |b 2 |
700 | 1 | _ | |a Lehnert, Werner |0 P:(DE-Juel1)129883 |b 3 |
773 | _ | _ | |a 10.3390/app122312193 |g Vol. 12, no. 23, p. 12193 - |0 PERI:(DE-600)2704225-X |n 23 |p 12193 - |t Applied Sciences |v 12 |y 2022 |x 2076-3417 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/943321/files/applsci-12-12193-v2.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:943321 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)5106 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)176619 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)171318 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-123 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Chemische Energieträger |9 G:(DE-HGF)POF4-1231 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2022-11-15 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b APPL SCI-BASEL : 2021 |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-01-12T13:06:15Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-01-12T13:06:15Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-15 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-15 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2022-11-15 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2022-01-12T13:06:15Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-15 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-14-20191129 |k IEK-14 |l Elektrochemische Verfahrenstechnik |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-14-20191129 |
981 | _ | _ | |a I:(DE-Juel1)IET-4-20191129 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|