001     943321
005     20240712113247.0
024 7 _ |a 10.3390/app122312193
|2 doi
024 7 _ |a 2128/33791
|2 Handle
024 7 _ |a WOS:000912433600001
|2 WOS
037 _ _ |a FZJ-2023-00927
082 _ _ |a 600
100 1 _ |a Froning, Dieter
|0 P:(DE-Juel1)5106
|b 0
|e Corresponding author
245 _ _ |a Flow Characteristics of Fibrous Gas Diffusion Layers Using Machine Learning Methods
260 _ _ |a Basel
|c 2022
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674746372_19833
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The material characteristics of gas diffusion layers are relevant for the efficient operation of polymer electrolyte fuel cells. The current state-of-the-art calculates these using transport simulations based on their micro-structures, either reconstructed or generated by means of stochastic geometry models. Such transport simulations often require high computational resources. To support material characterization using artificial-intelligence-based methods, in this study, a convolutional neural network was developed. It was trained with results from previous transport simulations and validated using five-fold cross-validation. The neural network enables the permeability of paper-type gas diffusion layers to be predicted. A stochastic arrangement of the fibers, four types of binder distributions, and compression of up to 50% are also considered. The binder type and compression level were features inherent to the material but were not the subject of the training. In this regard, they can be seen as features hidden from the training process. Nevertheless, these characteristics were reproduced with the proposed machine learning model. With a trained machine learning model, the prediction of permeability can be performed on a standard computer.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wirtz, Jannik
|0 P:(DE-Juel1)176619
|b 1
|u fzj
700 1 _ |a Hoppe, Eugen
|0 P:(DE-Juel1)171318
|b 2
700 1 _ |a Lehnert, Werner
|0 P:(DE-Juel1)129883
|b 3
773 _ _ |a 10.3390/app122312193
|g Vol. 12, no. 23, p. 12193 -
|0 PERI:(DE-600)2704225-X
|n 23
|p 12193 -
|t Applied Sciences
|v 12
|y 2022
|x 2076-3417
856 4 _ |u https://juser.fz-juelich.de/record/943321/files/applsci-12-12193-v2.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:943321
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)5106
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176619
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171318
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-15
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL SCI-BASEL : 2021
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-01-12T13:06:15Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-01-12T13:06:15Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-15
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-15
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-15
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-01-12T13:06:15Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-15
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21