000943337 001__ 943337
000943337 005__ 20240625095119.0
000943337 0247_ $$2doi$$a10.1016/j.celrep.2022.110346
000943337 0247_ $$2ISSN$$a2211-1247
000943337 0247_ $$2ISSN$$a2639-1856
000943337 0247_ $$2Handle$$a2128/33767
000943337 0247_ $$2pmid$$a35139375
000943337 0247_ $$2WOS$$aWOS:000754407500004
000943337 037__ $$aFZJ-2023-00943
000943337 082__ $$a610
000943337 1001_ $$0P:(DE-HGF)0$$aKrishnamurthy, Srinath$$b0
000943337 245__ $$aPreproteins couple the intrinsic dynamics of SecA to its ATPase cycle to translocate via a catch and release mechanism
000943337 260__ $$a[New York, NY]$$bElsevier$$c2022
000943337 3367_ $$2DRIVER$$aarticle
000943337 3367_ $$2DataCite$$aOutput Types/Journal article
000943337 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674631745_21581
000943337 3367_ $$2BibTeX$$aARTICLE
000943337 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000943337 3367_ $$00$$2EndNote$$aJournal Article
000943337 520__ $$aProtein machines undergo conformational motions to interact with and manipulate polymeric substrates. The Sec translocase promiscuously recognizes, becomes activated, and secretes >500 non-folded preprotein clients across bacterial cytoplasmic membranes. Here, we reveal that the intrinsic dynamics of the translocase ATPase, SecA, and of preproteins combine to achieve translocation. SecA possesses an intrinsically dynamic preprotein clamp attached to an equally dynamic ATPase motor. Alternating motor conformations are finely controlled by the γ-phosphate of ATP, while ADP causes motor stalling, independently of clamp motions. Functional preproteins physically bridge these independent dynamics. Their signal peptides promote clamp closing; their mature domain overcomes the rate-limiting ADP release. While repeated ATP cycles shift the motor between unique states, multiple conformationally frustrated prongs in the clamp repeatedly “catch and release” trapped preprotein segments until translocation completion. This universal mechanism allows any preprotein to promiscuously recognize the translocase, usurp its intrinsic dynamics, and become secreted.
000943337 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000943337 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000943337 7001_ $$00000-0001-7337-3105$$aSardis, Marios-Frantzeskos$$b1
000943337 7001_ $$0P:(DE-HGF)0$$aEleftheriadis, Nikolaos$$b2
000943337 7001_ $$0P:(DE-HGF)0$$aChatzi, Katerina E.$$b3
000943337 7001_ $$0P:(DE-HGF)0$$aSmit, Jochem H.$$b4
000943337 7001_ $$0P:(DE-HGF)0$$aKarathanou, Konstantina$$b5
000943337 7001_ $$00000-0002-2255-0455$$aGouridis, Giorgos$$b6
000943337 7001_ $$aPortaliou, Athina G.$$b7
000943337 7001_ $$0P:(DE-Juel1)187548$$aBondar, Ana-Nicoleta$$b8
000943337 7001_ $$aKaramanou, Spyridoula$$b9
000943337 7001_ $$00000-0002-1770-507X$$aEconomou, Anastassios$$b10$$eCorresponding author
000943337 773__ $$0PERI:(DE-600)2649101-1$$a10.1016/j.celrep.2022.110346$$gVol. 38, no. 6, p. 110346 -$$n6$$p110346 -$$tCell reports$$v38$$x2211-1247$$y2022
000943337 8564_ $$uhttps://juser.fz-juelich.de/record/943337/files/1-s2.0-S2211124722000626-main.pdf$$yOpenAccess
000943337 909CO $$ooai:juser.fz-juelich.de:943337$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000943337 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187548$$aForschungszentrum Jülich$$b8$$kFZJ
000943337 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000943337 9141_ $$y2022
000943337 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000943337 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-17
000943337 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-17
000943337 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-17
000943337 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000943337 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL REP : 2021$$d2022-11-17
000943337 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-26T13:08:57Z
000943337 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-26T13:08:57Z
000943337 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-17
000943337 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-17
000943337 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000943337 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000943337 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-26T13:08:57Z
000943337 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-17
000943337 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCELL REP : 2021$$d2022-11-17
000943337 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000943337 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000943337 920__ $$lyes
000943337 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000943337 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000943337 980__ $$ajournal
000943337 980__ $$aVDB
000943337 980__ $$aUNRESTRICTED
000943337 980__ $$aI:(DE-Juel1)IAS-5-20120330
000943337 980__ $$aI:(DE-Juel1)INM-9-20140121
000943337 9801_ $$aFullTexts