000943338 001__ 943338
000943338 005__ 20240625095119.0
000943338 0247_ $$2doi$$a10.1128/mbio.03039-22
000943338 0247_ $$2ISSN$$a2150-7511
000943338 0247_ $$2ISSN$$a2161-2129
000943338 0247_ $$2Handle$$a2128/33760
000943338 0247_ $$2pmid$$a36413022
000943338 0247_ $$2WOS$$aWOS:000890586800001
000943338 037__ $$aFZJ-2023-00944
000943338 082__ $$a570
000943338 1001_ $$0P:(DE-HGF)0$$aGovorunova, Elena G.$$b0
000943338 245__ $$aStructural Foundations of Potassium Selectivity in Channelrhodopsins
000943338 260__ $$aWashington, DC$$bAmerican Society for Microbiology$$c2022
000943338 3367_ $$2DRIVER$$aarticle
000943338 3367_ $$2DataCite$$aOutput Types/Journal article
000943338 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714995652_12919
000943338 3367_ $$2BibTeX$$aARTICLE
000943338 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000943338 3367_ $$00$$2EndNote$$aJournal Article
000943338 520__ $$aPotassium-selective channelrhodopsins (KCRs) are light-gated K+ channels recently found in the stramenopile protist Hyphochytrium catenoides. When expressed in neurons, KCRs enable high-precision optical inhibition of spiking (optogenetic silencing). KCRs are capable of discriminating K+ from Na+ without the conventional K+ selectivity filter found in classical K+ channels. The genome of H. catenoides also encodes a third paralog that is more permeable for Na+ than for K+. To identify structural motifs responsible for the unusual K+ selectivity of KCRs, we systematically analyzed a series of chimeras and mutants of this protein. We found that mutations of three critical residues in the paralog convert its Na+-selective channel into a K+-selective one. Our characterization of homologous proteins from other protists (Colponema vietnamica, Cafeteria burkhardae, and Chromera velia) and metagenomic samples confirmed the importance of these residues for K+ selectivity. We also show that Trp102 and Asp116, conserved in all three H. catenoides paralogs, are necessary, although not sufficient, for K+ selectivity. Our results provide the foundation for further engineering of KCRs for optogenetic needs.
000943338 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000943338 542__ $$2Crossref$$i2022-12-20$$uhttps://creativecommons.org/licenses/by/4.0/
000943338 542__ $$2Crossref$$i2022-12-20$$uhttps://journals.asm.org/non-commercial-tdm-license
000943338 588__ $$aDataset connected to DataCite
000943338 7001_ $$0P:(DE-HGF)0$$aSineshchekov, Oleg A.$$b1
000943338 7001_ $$0P:(DE-HGF)0$$aBrown, Leonid S.$$b2
000943338 7001_ $$0P:(DE-Juel1)187548$$aBondar, Ana-Nicoleta$$b3$$ufzj
000943338 7001_ $$0P:(DE-HGF)0$$aSpudich, John L.$$b4$$eCorresponding author
000943338 77318 $$2Crossref$$3journal-article$$a10.1128/mbio.03039-22$$bAmerican Society for Microbiology$$d2022-12-20$$n6$$tmBio$$v13$$x2150-7511$$y2022
000943338 773__ $$0PERI:(DE-600)2557172-2$$a10.1128/mbio.03039-22$$gVol. 13, no. 6, p. e03039-22$$n6$$pe03039-22$$tmBio$$v13$$x2161-2129$$y2022
000943338 8564_ $$uhttps://juser.fz-juelich.de/record/943338/files/Govorunova_mBio2022.docx$$yOpenAccess
000943338 8564_ $$uhttps://juser.fz-juelich.de/record/943338/files/mbio.03039-22.pdf$$yOpenAccess
000943338 909CO $$ooai:juser.fz-juelich.de:943338$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000943338 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187548$$aForschungszentrum Jülich$$b3$$kFZJ
000943338 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000943338 9141_ $$y2022
000943338 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000943338 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000943338 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMBIO : 2022$$d2023-08-24
000943338 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
000943338 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
000943338 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-24
000943338 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-03-14T07:11:37Z
000943338 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-03-14T07:11:37Z
000943338 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-03-14T07:11:37Z
000943338 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2023-03-14T07:11:37Z
000943338 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
000943338 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-24
000943338 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-24
000943338 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
000943338 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-24
000943338 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-24
000943338 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMBIO : 2022$$d2023-08-24
000943338 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-24
000943338 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-24
000943338 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000943338 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000943338 980__ $$ajournal
000943338 980__ $$aVDB
000943338 980__ $$aI:(DE-Juel1)IAS-5-20120330
000943338 980__ $$aI:(DE-Juel1)INM-9-20140121
000943338 980__ $$aUNRESTRICTED
000943338 9801_ $$aFullTexts
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1128/mBio.01656-21
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aan5544
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-biochem-101910-144233
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-micro-031721-020452
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-1-0716-2329-9_1
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.122243399
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-020-19457-7
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cub.2020.09.056
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aaa7484
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1936192100
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nn1525
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41593-022-01094-6
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/s0014-5793(03)01104-9
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmb.2021.167002
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1710702114
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cell.2022.01.007
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-022-32441-7
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/257028a0
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature10870
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.7554/eLife.41741
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1098/rsob.170184
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3389/fnmol.2022.976910
000943338 999C5 $$1Hille B$$2Crossref$$tIon channels of excitable membranes.$$uHille B. 2001. Ion channels of excitable membranes. Sinauer Associates, Sunderland, MA.$$y2001
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0050018
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1101/2022.07.02.498568$$uVierock J Peter E Grimm C Rozenberg A Castro Scalise AG Augustin S Tanese D Forget BC Emiliani V Béjà O Hegemann P. 2022. WiChR a highly potassium selective channelrhodopsin for low-light two-photon neuronal inhibition. bioRxiv. doi:10.1101/2022.07.02.498568.
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.87.3.1018
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1093/nar/gkm276
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0095467
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature06635
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bpj.2013.01.002
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s43586-022-00136-4
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41591-021-01351-4
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.febslet.2013.08.043
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/anie.201301698
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmb.2014.11.004
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.7554/eLife.65903
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/bi00206a001
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1249375
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bpj.2019.04.001
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1128/mBio.00657-20
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.8378771
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.86.23.9228
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1072068
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41594-022-00783-x
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1093/nar/gky376
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1093/nar/gkac420
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-017-02342-1
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1101/2020.10.15.341214$$uDelmont TO Gaia M Hinsinger DD Fremont P Vanni C Guerra AF Eren AM Kourlaiev A d’Agata L Clayssen Q Villar E Labadie K Cruaud C Poulain J Da Silva C Wessner M Noel B Aury J-M de Vargas C Bowler C Karsenti E Pelletier E Wincker P Jaillon O. 2021. Functional repertoire convergence of distantly related eukaryotic plankton lineages revealed by genome-resolved metagenomics. bioRxiv. doi:10.1101/2020.10.15.341214.
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1093/nar/gkaa939
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1093/nar/gkaa898
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.7554/eLife.06974
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1101/2022.04.08.487609$$uHallgren J Tsirigos KD Pedersen MD Almagro Armenteros JJ Marcatili P Nielsen H Krogh A Winther O. 2022. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. bioRxiv. doi:10.1101/2022.04.08.487609.
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1093/molbev/msaa015
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41592-022-01488-1
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S1399004715015722
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/jcc.540040211
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/jp973084f
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/jcc.20065
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.445869
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0006-3495(95)80184-0
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0006-3495(00)76626-4
000943338 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.str.2005.01.021