001     943338
005     20240625095119.0
024 7 _ |a 10.1128/mbio.03039-22
|2 doi
024 7 _ |a 2150-7511
|2 ISSN
024 7 _ |a 2161-2129
|2 ISSN
024 7 _ |a 2128/33760
|2 Handle
024 7 _ |a 36413022
|2 pmid
024 7 _ |a WOS:000890586800001
|2 WOS
037 _ _ |a FZJ-2023-00944
082 _ _ |a 570
100 1 _ |a Govorunova, Elena G.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Structural Foundations of Potassium Selectivity in Channelrhodopsins
260 _ _ |a Washington, DC
|c 2022
|b American Society for Microbiology
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714995652_12919
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Potassium-selective channelrhodopsins (KCRs) are light-gated K+ channels recently found in the stramenopile protist Hyphochytrium catenoides. When expressed in neurons, KCRs enable high-precision optical inhibition of spiking (optogenetic silencing). KCRs are capable of discriminating K+ from Na+ without the conventional K+ selectivity filter found in classical K+ channels. The genome of H. catenoides also encodes a third paralog that is more permeable for Na+ than for K+. To identify structural motifs responsible for the unusual K+ selectivity of KCRs, we systematically analyzed a series of chimeras and mutants of this protein. We found that mutations of three critical residues in the paralog convert its Na+-selective channel into a K+-selective one. Our characterization of homologous proteins from other protists (Colponema vietnamica, Cafeteria burkhardae, and Chromera velia) and metagenomic samples confirmed the importance of these residues for K+ selectivity. We also show that Trp102 and Asp116, conserved in all three H. catenoides paralogs, are necessary, although not sufficient, for K+ selectivity. Our results provide the foundation for further engineering of KCRs for optogenetic needs.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
542 _ _ |i 2022-12-20
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0/
542 _ _ |i 2022-12-20
|2 Crossref
|u https://journals.asm.org/non-commercial-tdm-license
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Sineshchekov, Oleg A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Brown, Leonid S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bondar, Ana-Nicoleta
|0 P:(DE-Juel1)187548
|b 3
|u fzj
700 1 _ |a Spudich, John L.
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 1 8 |a 10.1128/mbio.03039-22
|b American Society for Microbiology
|d 2022-12-20
|n 6
|3 journal-article
|2 Crossref
|t mBio
|v 13
|y 2022
|x 2150-7511
773 _ _ |a 10.1128/mbio.03039-22
|g Vol. 13, no. 6, p. e03039-22
|0 PERI:(DE-600)2557172-2
|n 6
|p e03039-22
|t mBio
|v 13
|y 2022
|x 2161-2129
856 4 _ |u https://juser.fz-juelich.de/record/943338/files/Govorunova_mBio2022.docx
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/943338/files/mbio.03039-22.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:943338
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)187548
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MBIO : 2022
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-03-14T07:11:37Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-03-14T07:11:37Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-03-14T07:11:37Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2023-03-14T07:11:37Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MBIO : 2022
|d 2023-08-24
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-24
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-24
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |9 -- missing cx lookup --
|a 10.1128/mBio.01656-21
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1126/science.aan5544
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1146/annurev-biochem-101910-144233
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1146/annurev-micro-031721-020452
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1007/978-1-0716-2329-9_1
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1073/pnas.122243399
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/s41467-020-19457-7
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.cub.2020.09.056
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1126/science.aaa7484
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1073/pnas.1936192100
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nn1525
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/s41593-022-01094-6
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/s0014-5793(03)01104-9
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.jmb.2021.167002
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1073/pnas.1710702114
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.cell.2022.01.007
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/s41467-022-32441-7
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/257028a0
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nature10870
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.7554/eLife.41741
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1098/rsob.170184
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.3389/fnmol.2022.976910
|2 Crossref
999 C 5 |1 Hille B
|y 2001
|2 Crossref
|u Hille B. 2001. Ion channels of excitable membranes. Sinauer Associates, Sunderland, MA.
|t Ion channels of excitable membranes.
999 C 5 |9 -- missing cx lookup --
|a 10.1371/journal.pone.0050018
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1101/2022.07.02.498568
|2 Crossref
|u Vierock J Peter E Grimm C Rozenberg A Castro Scalise AG Augustin S Tanese D Forget BC Emiliani V Béjà O Hegemann P. 2022. WiChR a highly potassium selective channelrhodopsin for low-light two-photon neuronal inhibition. bioRxiv. doi:10.1101/2022.07.02.498568.
999 C 5 |9 -- missing cx lookup --
|a 10.1073/pnas.87.3.1018
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1093/nar/gkm276
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1371/journal.pone.0095467
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nature06635
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.bpj.2013.01.002
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/s43586-022-00136-4
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/s41591-021-01351-4
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.febslet.2013.08.043
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1002/anie.201301698
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.jmb.2014.11.004
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.7554/eLife.65903
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1021/bi00206a001
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1126/science.1249375
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.bpj.2019.04.001
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1128/mBio.00657-20
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1126/science.8378771
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1073/pnas.86.23.9228
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1126/science.1072068
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/s41594-022-00783-x
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1093/nar/gky376
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1093/nar/gkac420
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/s41467-017-02342-1
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1101/2020.10.15.341214
|2 Crossref
|u Delmont TO Gaia M Hinsinger DD Fremont P Vanni C Guerra AF Eren AM Kourlaiev A d’Agata L Clayssen Q Villar E Labadie K Cruaud C Poulain J Da Silva C Wessner M Noel B Aury J-M de Vargas C Bowler C Karsenti E Pelletier E Wincker P Jaillon O. 2021. Functional repertoire convergence of distantly related eukaryotic plankton lineages revealed by genome-resolved metagenomics. bioRxiv. doi:10.1101/2020.10.15.341214.
999 C 5 |9 -- missing cx lookup --
|a 10.1093/nar/gkaa939
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1093/nar/gkaa898
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.7554/eLife.06974
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1101/2022.04.08.487609
|2 Crossref
|u Hallgren J Tsirigos KD Pedersen MD Almagro Armenteros JJ Marcatili P Nielsen H Krogh A Winther O. 2022. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. bioRxiv. doi:10.1101/2022.04.08.487609.
999 C 5 |9 -- missing cx lookup --
|a 10.1093/molbev/msaa015
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1038/s41592-022-01488-1
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1107/S1399004715015722
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1002/jcc.540040211
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1021/jp973084f
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1002/jcc.20065
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1063/1.445869
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/S0006-3495(95)80184-0
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/S0006-3495(00)76626-4
|2 Crossref
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.str.2005.01.021
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21