000943340 001__ 943340
000943340 005__ 20240625095119.0
000943340 0247_ $$2doi$$a10.1016/bs.apcsb.2021.09.002
000943340 0247_ $$2ISSN$$a1876-1623
000943340 0247_ $$2ISSN$$a1876-1631
000943340 0247_ $$2pmid$$a35034719
000943340 0247_ $$2WOS$$aWOS:000873703000006
000943340 037__ $$aFZJ-2023-00946
000943340 082__ $$a540
000943340 1001_ $$0P:(DE-Juel1)187548$$aBondar, Ana-Nicoleta$$b0$$eCorresponding author$$ufzj
000943340 245__ $$aMechanisms of long-distance allosteric couplings in proton-binding membrane transporters
000943340 260__ $$aHeidelberg$$bElsevier$$c2022
000943340 3367_ $$2DRIVER$$aarticle
000943340 3367_ $$2DataCite$$aOutput Types/Journal article
000943340 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674565114_28169
000943340 3367_ $$2BibTeX$$aARTICLE
000943340 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000943340 3367_ $$00$$2EndNote$$aJournal Article
000943340 520__ $$aMembrane transporters that use proton binding and proton transfer for function couple local protonation change with changes in protein conformation and water dynamics. Changes of protein conformation might be required to allow transient formation of hydrogen-bond networks that bridge proton donor and acceptor pairs separated by long distances. Inter-helical hydrogen-bond networks adjust rapidly to protonation change, and ensure rapid response of the protein structure and dynamics. Membrane transporters with known three-dimensional structures and proton-binding groups inform on general principles of protonation-coupled protein conformational dynamics. Inter-helical hydrogen bond motifs between proton-binding carboxylate groups and a polar sidechain are observed in unrelated membrane transporters, suggesting common principles of coupling protonation change with protein conformational dynamics.
000943340 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000943340 588__ $$aDataset connected to CrossRef Book Series, Journals: juser.fz-juelich.de
000943340 773__ $$0PERI:(DE-600)2528495-2$$a10.1016/bs.apcsb.2021.09.002$$p199-238$$tAdvances in protein chemistry and structural biology$$v128$$x1876-1623$$y2022
000943340 8564_ $$uhttps://juser.fz-juelich.de/record/943340/files/Manuscript_APSB_BondarA-N.docx$$yRestricted
000943340 909CO $$ooai:juser.fz-juelich.de:943340$$pVDB
000943340 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187548$$aForschungszentrum Jülich$$b0$$kFZJ
000943340 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000943340 9141_ $$y2022
000943340 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000943340 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000943340 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV PROTEIN CHEM STR : 2021$$d2022-11-11
000943340 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bADV PROTEIN CHEM STR : 2021$$d2022-11-11
000943340 920__ $$lyes
000943340 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000943340 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000943340 980__ $$ajournal
000943340 980__ $$aVDB
000943340 980__ $$aI:(DE-Juel1)IAS-5-20120330
000943340 980__ $$aI:(DE-Juel1)INM-9-20140121
000943340 980__ $$aUNRESTRICTED