Hauptseite > Publikationsdatenbank > Mechanisms of long-distance allosteric couplings in proton-binding membrane transporters > print |
001 | 943340 | ||
005 | 20240625095119.0 | ||
024 | 7 | _ | |a 10.1016/bs.apcsb.2021.09.002 |2 doi |
024 | 7 | _ | |a 1876-1623 |2 ISSN |
024 | 7 | _ | |a 1876-1631 |2 ISSN |
024 | 7 | _ | |a 35034719 |2 pmid |
024 | 7 | _ | |a WOS:000873703000006 |2 WOS |
037 | _ | _ | |a FZJ-2023-00946 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Bondar, Ana-Nicoleta |0 P:(DE-Juel1)187548 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Mechanisms of long-distance allosteric couplings in proton-binding membrane transporters |
260 | _ | _ | |a Heidelberg |c 2022 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1674565114_28169 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Membrane transporters that use proton binding and proton transfer for function couple local protonation change with changes in protein conformation and water dynamics. Changes of protein conformation might be required to allow transient formation of hydrogen-bond networks that bridge proton donor and acceptor pairs separated by long distances. Inter-helical hydrogen-bond networks adjust rapidly to protonation change, and ensure rapid response of the protein structure and dynamics. Membrane transporters with known three-dimensional structures and proton-binding groups inform on general principles of protonation-coupled protein conformational dynamics. Inter-helical hydrogen bond motifs between proton-binding carboxylate groups and a polar sidechain are observed in unrelated membrane transporters, suggesting common principles of coupling protonation change with protein conformational dynamics. |
536 | _ | _ | |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524) |0 G:(DE-HGF)POF4-5241 |c POF4-524 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef Book Series, Journals: juser.fz-juelich.de |
773 | _ | _ | |a 10.1016/bs.apcsb.2021.09.002 |0 PERI:(DE-600)2528495-2 |p 199-238 |t Advances in protein chemistry and structural biology |v 128 |y 2022 |x 1876-1623 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/943340/files/Manuscript_APSB_BondarA-N.docx |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:943340 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)187548 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5241 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-11 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV PROTEIN CHEM STR : 2021 |d 2022-11-11 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ADV PROTEIN CHEM STR : 2021 |d 2022-11-11 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-5-20120330 |k IAS-5 |l Computational Biomedicine |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-9-20140121 |k INM-9 |l Computational Biomedicine |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IAS-5-20120330 |
980 | _ | _ | |a I:(DE-Juel1)INM-9-20140121 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|