000943341 001__ 943341
000943341 005__ 20230228121554.0
000943341 0247_ $$2doi$$a10.1016/j.bbamem.2022.183896
000943341 0247_ $$2ISSN$$a0005-2728
000943341 0247_ $$2ISSN$$a0006-3002
000943341 0247_ $$2ISSN$$a0005-2736
000943341 0247_ $$2ISSN$$a1879-2642
000943341 0247_ $$2Handle$$a2128/33759
000943341 0247_ $$2pmid$$a35217000
000943341 0247_ $$2WOS$$aWOS:000788122400005
000943341 037__ $$aFZJ-2023-00947
000943341 082__ $$a570
000943341 1001_ $$0P:(DE-HGF)0$$aLazaratos, Michalis$$b0
000943341 245__ $$aConserved hydrogen-bond motifs of membrane transporters and receptors
000943341 260__ $$aAmsterdam$$bElsevier$$c2022
000943341 3367_ $$2DRIVER$$aarticle
000943341 3367_ $$2DataCite$$aOutput Types/Journal article
000943341 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674567576_28173
000943341 3367_ $$2BibTeX$$aARTICLE
000943341 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000943341 3367_ $$00$$2EndNote$$aJournal Article
000943341 520__ $$aMembrane transporters and receptors often rely on conserved hydrogen bonds to assemble transient paths for ion transfer or long-distance conformational couplings. For transporters and receptors that use proton binding and proton transfer for function, inter-helical hydrogen bonds of titratable protein sidechains that could change protonation are of central interest to formulate hypotheses about reaction mechanisms. Knowledge of hydrogen bonds common at sites of potential interest for proton binding could thus inform and guide studies on functional mechanisms of protonation-coupled membrane proteins. Here we apply graph-theory approaches to identify hydrogen-bond motifs of carboxylate and histidine sidechains in a large data set of static membrane protein structures. We find that carboxylate-hydroxyl hydrogen bonds are present in numerous structures of the dataset, and can be part of more extended H-bond clusters that could be relevant to conformational coupling. Carboxylate-carboxyamide and imidazole-imidazole hydrogen bonds are represented in comparably fewer protein structures of the dataset. Atomistic simulations on two membrane transporters in lipid membranes suggest that many of the hydrogen bond motifs present in static protein structures tend to be robust, and can be part of larger hydrogen-bond clusters that recruit additional hydrogen bonds.
000943341 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000943341 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000943341 7001_ $$0P:(DE-HGF)0$$aSiemers, Malte$$b1
000943341 7001_ $$0P:(DE-HGF)0$$aBrown, Leonid S.$$b2
000943341 7001_ $$0P:(DE-Juel1)187548$$aBondar, Ana-Nicoleta$$b3$$eCorresponding author$$ufzj
000943341 773__ $$0PERI:(DE-600)2209384-9$$a10.1016/j.bbamem.2022.183896$$gVol. 1864, no. 6, p. 183896 -$$n6$$p183896 -$$tBiochimica et biophysica acta / Biomembranes$$v1864$$x0005-2728$$y2022
000943341 8564_ $$uhttps://juser.fz-juelich.de/record/943341/files/Manuscript_Lazaratos_BBA2022.docx$$yPublished on 2022-02-23. Available in OpenAccess from 2023-02-23.
000943341 909CO $$ooai:juser.fz-juelich.de:943341$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000943341 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187548$$aForschungszentrum Jülich$$b3$$kFZJ
000943341 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000943341 9141_ $$y2022
000943341 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-16
000943341 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-16
000943341 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-16
000943341 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-16
000943341 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-16
000943341 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000943341 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000943341 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBBA-BIOMEMBRANES : 2021$$d2022-11-16
000943341 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-16
000943341 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-16
000943341 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-16
000943341 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-16
000943341 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-16
000943341 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-16
000943341 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-16$$wger
000943341 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-16
000943341 920__ $$lyes
000943341 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000943341 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000943341 980__ $$ajournal
000943341 980__ $$aVDB
000943341 980__ $$aUNRESTRICTED
000943341 980__ $$aI:(DE-Juel1)IAS-5-20120330
000943341 980__ $$aI:(DE-Juel1)INM-9-20140121
000943341 9801_ $$aFullTexts