000943359 001__ 943359
000943359 005__ 20240408211947.0
000943359 0247_ $$2doi$$a10.1088/1361-6560/acaa84
000943359 0247_ $$2ISSN$$a0031-9155
000943359 0247_ $$2ISSN$$a1361-6560
000943359 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-00958
000943359 0247_ $$2pmid$$a36595256
000943359 0247_ $$2WOS$$aWOS:000911421500001
000943359 037__ $$aFZJ-2023-00958
000943359 082__ $$a530
000943359 1001_ $$0P:(DE-Juel1)184957$$aLi, Chong$$b0$$eCorresponding author
000943359 245__ $$aFast 3D kernel computation method for positron range correction in PET
000943359 260__ $$aBristol$$bIOP Publ.$$c2023
000943359 3367_ $$2DRIVER$$aarticle
000943359 3367_ $$2DataCite$$aOutput Types/Journal article
000943359 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712566578_21292
000943359 3367_ $$2BibTeX$$aARTICLE
000943359 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000943359 3367_ $$00$$2EndNote$$aJournal Article
000943359 520__ $$aObjective. The positron range is a fundamental, detector-independent physical limitation to spatial resolution in positron emission tomography (PET) as it causes a significant blurring of underlying activity distribution in the reconstructed images. A major challenge for positron range correction methods is to provide accurate range kernels that inherently incorporate the generally inhomogeneous stopping power, especially at tissue boundaries. In this work, we propose a novel approach to generate accurate three-dimensional (3D) blurring kernels both in homogenous and heterogeneous media to improve PET spatial resolution. Approach. In the proposed approach, positron energy deposition was approximately tracked along straight paths, depending on the positron stopping power of the underlying material. The positron stopping power was derived from the attenuation coefficient of 511 keV gamma photons according to the available PET attenuation maps. Thus, the history of energy deposition is taken into account within the range of kernels. Special emphasis was placed on facilitating the very fast computation of the positron annihilation probability in each voxel. Results. Positron path distributions of 18F in low-density polyurethane were in high agreement with Geant4 simulation at an annihilation probability larger than 10−2 ∼ 10−3 of the maximum annihilation probability. The Geant4 simulation was further validated with measured 18F depth profiles in these polyurethane phantoms. The tissue boundary of water with cortical bone and lung was correctly modeled. Residual artifacts from the numerical computations were in the range of 1%. The calculated annihilation probability in voxels shows an overall difference of less than 20% compared to the Geant4 simulation. Significance. The proposed method is expected to significantly improve spatial resolution for non-standard isotopes by providing sufficiently accurate range kernels, even in the case of significant tissue inhomogeneities.
000943359 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000943359 536__ $$0G:(GEPRIS)491111487$$aDFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x1
000943359 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000943359 7001_ $$0P:(DE-Juel1)131791$$aScheins, Jürgen$$b1
000943359 7001_ $$0P:(DE-Juel1)131797$$aTellmann, Lutz$$b2
000943359 7001_ $$0P:(DE-Juel1)177036$$aIssa, Ahlam$$b3
000943359 7001_ $$0P:(DE-HGF)0$$aWei, Long$$b4
000943359 7001_ $$0P:(DE-Juel1)131794$$aShah, N Jon$$b5
000943359 7001_ $$0P:(DE-Juel1)164254$$aLerche, Christoph$$b6
000943359 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/acaa84$$gVol. 68, no. 2, p. 025004 -$$n2$$p025004 -$$tPhysics in medicine and biology$$v68$$x0031-9155$$y2023
000943359 8564_ $$uhttps://juser.fz-juelich.de/record/943359/files/Li_2023_Phys._Med._Biol._68_025004.pdf$$yOpenAccess
000943359 8767_ $$d2023-01-24$$eHybrid-OA$$jPublish and Read
000943359 909CO $$ooai:juser.fz-juelich.de:943359$$pdnbdelivery$$popenCost$$popenaire$$pVDB$$pdriver$$popen_access
000943359 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184957$$aForschungszentrum Jülich$$b0$$kFZJ
000943359 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131791$$aForschungszentrum Jülich$$b1$$kFZJ
000943359 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131797$$aForschungszentrum Jülich$$b2$$kFZJ
000943359 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177036$$aForschungszentrum Jülich$$b3$$kFZJ
000943359 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b5$$kFZJ
000943359 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164254$$aForschungszentrum Jülich$$b6$$kFZJ
000943359 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000943359 9141_ $$y2023
000943359 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000943359 915pc $$0PC:(DE-HGF)0107$$2APC$$aTIB: IOP Publishing 2022
000943359 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-17
000943359 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-17
000943359 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-17
000943359 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000943359 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000943359 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-26$$wger
000943359 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
000943359 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
000943359 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-26
000943359 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
000943359 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-26
000943359 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2022$$d2023-08-26
000943359 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
000943359 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-26
000943359 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-26
000943359 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-26
000943359 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000943359 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000943359 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000943359 980__ $$ajournal
000943359 980__ $$aVDB
000943359 980__ $$aI:(DE-Juel1)INM-4-20090406
000943359 980__ $$aI:(DE-Juel1)INM-11-20170113
000943359 980__ $$aI:(DE-82)080010_20140620
000943359 980__ $$aAPC
000943359 980__ $$aUNRESTRICTED
000943359 9801_ $$aAPC
000943359 9801_ $$aFullTexts