Home > Publications database > Fast 3D kernel computation method for positron range correction in PET > print |
001 | 943359 | ||
005 | 20240408211947.0 | ||
024 | 7 | _ | |a 10.1088/1361-6560/acaa84 |2 doi |
024 | 7 | _ | |a 0031-9155 |2 ISSN |
024 | 7 | _ | |a 1361-6560 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2023-00958 |2 datacite_doi |
024 | 7 | _ | |a 36595256 |2 pmid |
024 | 7 | _ | |a WOS:000911421500001 |2 WOS |
037 | _ | _ | |a FZJ-2023-00958 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Li, Chong |0 P:(DE-Juel1)184957 |b 0 |e Corresponding author |
245 | _ | _ | |a Fast 3D kernel computation method for positron range correction in PET |
260 | _ | _ | |a Bristol |c 2023 |b IOP Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712566578_21292 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Objective. The positron range is a fundamental, detector-independent physical limitation to spatial resolution in positron emission tomography (PET) as it causes a significant blurring of underlying activity distribution in the reconstructed images. A major challenge for positron range correction methods is to provide accurate range kernels that inherently incorporate the generally inhomogeneous stopping power, especially at tissue boundaries. In this work, we propose a novel approach to generate accurate three-dimensional (3D) blurring kernels both in homogenous and heterogeneous media to improve PET spatial resolution. Approach. In the proposed approach, positron energy deposition was approximately tracked along straight paths, depending on the positron stopping power of the underlying material. The positron stopping power was derived from the attenuation coefficient of 511 keV gamma photons according to the available PET attenuation maps. Thus, the history of energy deposition is taken into account within the range of kernels. Special emphasis was placed on facilitating the very fast computation of the positron annihilation probability in each voxel. Results. Positron path distributions of 18F in low-density polyurethane were in high agreement with Geant4 simulation at an annihilation probability larger than 10−2 ∼ 10−3 of the maximum annihilation probability. The Geant4 simulation was further validated with measured 18F depth profiles in these polyurethane phantoms. The tissue boundary of water with cortical bone and lung was correctly modeled. Residual artifacts from the numerical computations were in the range of 1%. The calculated annihilation probability in voxels shows an overall difference of less than 20% compared to the Geant4 simulation. Significance. The proposed method is expected to significantly improve spatial resolution for non-standard isotopes by providing sufficiently accurate range kernels, even in the case of significant tissue inhomogeneities. |
536 | _ | _ | |a 5253 - Neuroimaging (POF4-525) |0 G:(DE-HGF)POF4-5253 |c POF4-525 |f POF IV |x 0 |
536 | _ | _ | |a DFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487) |0 G:(GEPRIS)491111487 |c 491111487 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Scheins, Jürgen |0 P:(DE-Juel1)131791 |b 1 |
700 | 1 | _ | |a Tellmann, Lutz |0 P:(DE-Juel1)131797 |b 2 |
700 | 1 | _ | |a Issa, Ahlam |0 P:(DE-Juel1)177036 |b 3 |
700 | 1 | _ | |a Wei, Long |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Shah, N Jon |0 P:(DE-Juel1)131794 |b 5 |
700 | 1 | _ | |a Lerche, Christoph |0 P:(DE-Juel1)164254 |b 6 |
773 | _ | _ | |a 10.1088/1361-6560/acaa84 |g Vol. 68, no. 2, p. 025004 - |0 PERI:(DE-600)1473501-5 |n 2 |p 025004 - |t Physics in medicine and biology |v 68 |y 2023 |x 0031-9155 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/943359/files/Li_2023_Phys._Med._Biol._68_025004.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:943359 |p openaire |p open_access |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)184957 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)131791 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)131797 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)177036 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)131794 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)164254 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5253 |x 0 |
914 | 1 | _ | |y 2023 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a TIB: IOP Publishing 2022 |0 PC:(DE-HGF)0107 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2022-11-17 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-17 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2023-08-26 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-08-26 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS MED BIOL : 2022 |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-26 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-26 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-08-26 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-4-20090406 |k INM-4 |l Physik der Medizinischen Bildgebung |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-11-20170113 |k INM-11 |l Jara-Institut Quantum Information |x 1 |
920 | 1 | _ | |0 I:(DE-82)080010_20140620 |k JARA-BRAIN |l JARA-BRAIN |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-4-20090406 |
980 | _ | _ | |a I:(DE-Juel1)INM-11-20170113 |
980 | _ | _ | |a I:(DE-82)080010_20140620 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|