000943368 001__ 943368
000943368 005__ 20230215201831.0
000943368 037__ $$aFZJ-2023-00967
000943368 041__ $$aEnglish
000943368 1001_ $$0P:(DE-Juel1)142052$$aPütter, Sabine$$b0$$eCorresponding author$$ufzj
000943368 1112_ $$a4th IEEE International Conference on Advances in Magnetics$$cMoena$$d2023-01-15 - 2023-01-18$$gIEEE AIM 2023$$wItaly
000943368 245__ $$aDetection of hydrogen in thin films through resonant neutron reflectometry via a magnetic layer
000943368 260__ $$c2023
000943368 3367_ $$033$$2EndNote$$aConference Paper
000943368 3367_ $$2DataCite$$aOther
000943368 3367_ $$2BibTeX$$aINPROCEEDINGS
000943368 3367_ $$2DRIVER$$aconferenceObject
000943368 3367_ $$2ORCID$$aLECTURE_SPEECH
000943368 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1676439258_7805$$xAfter Call
000943368 520__ $$aThe study of hydrogen diffusion and storage in different materials is crucial in the challenge of an actual implementation of sustainable energy sources, but also to explore the possible modification of electronic, magnetic and optical properties of the host material. Amongst the most widely used techniques to study hydrogen absorption in thin films are neutron (NR) and X-ray reflectometry (XRR). XRR allows to track the thickness changes of the absorbing layer, while NR gives in addition direct information about the absorbed hydrogen content. Nonetheless, NR is a relatively time-consuming measurement, with a sensitivity limit that greatly depends on the counting time. The detection limit is at about 5% atomic concentration.In this contribution we propose to apply resonant neutron reflectometry (RNR) [1]. The method is model-free and allows to measure smaller (<5%) concentrations of hydrogen absorbed in situ, with smaller counting times and with a higher sensitivity. Inserting a magnetic layer into the hydrogen absorbing layer a magnetic wave guide for neutrons is formed. On hydrogen loading the scattering potential of the system is modified which is seen in the position of the resonance formed due to the contrast between the scattering potential of the absorbing layer and its neighbours. The requirements for the magnetic thin film and the absorbing layer are discussed. We will present experiments performed on Al2O3/Nb(x)/Co(3nm)/Nb(x)/Pt(3nm) thin films demonstrating that hydrogen concentrations below 1% and absorption kinetics of few seconds can be measured using this method.Furthermore by combining information given by in situ XRR and RNR performed at NREX, a neutron reflectometer at the Heinz Maier-Leibnitz Zentrum in Garching, Germany we were able to observe peculiarities in the absorption process of niobium. In this contribution we will discuss the current results and give an overview on how magnetic properties of thin films like the depth resolved magnetic moment can be studied with polarized neutron reflectometry.[1] L. Guasco, Yu. N. Khaydukov, S. Pütter, L. Silvi, M. A. Paulin, T. Keller, and B. Keimer, Nat. Comms. 13 (2022) 1486
000943368 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000943368 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
000943368 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
000943368 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x1
000943368 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000943368 693__ $$0EXP:(DE-MLZ)MBE-MLZ-20151210$$5EXP:(DE-MLZ)MBE-MLZ-20151210$$eMBE-MLZ: Molecular Beam Epitaxy at MLZ$$x0
000943368 693__ $$0EXP:(DE-MLZ)MARIA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)MARIA-20140101$$6EXP:(DE-MLZ)NL5N-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eMARIA: Magnetic reflectometer with high incident angle$$fNL5N$$x1
000943368 693__ $$0EXP:(DE-MLZ)N-REX-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)N-REX-20140101$$6EXP:(DE-MLZ)NL1-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eNREX: Neutron reflectometer with X-ray option$$fNL1$$x2
000943368 7001_ $$0P:(DE-HGF)0$$aGuasco, Laura$$b1
000943368 7001_ $$0P:(DE-HGF)0$$aKhaydukov, Yury$$b2
000943368 7001_ $$0P:(DE-HGF)0$$aSilvi, Luca$$b3
000943368 7001_ $$0P:(DE-HGF)0$$aPaulin, Mariano$$b4
000943368 7001_ $$0P:(DE-HGF)0$$aKeller, Thomas$$b5
000943368 7001_ $$0P:(DE-HGF)0$$aKeimer, Bernhard$$b6
000943368 8564_ $$uhttps://www.aim2023.com
000943368 909CO $$ooai:juser.fz-juelich.de:943368$$pVDB:MLZ$$pVDB
000943368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142052$$aForschungszentrum Jülich$$b0$$kFZJ
000943368 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0
000943368 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
000943368 9141_ $$y2023
000943368 920__ $$lyes
000943368 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x0
000943368 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
000943368 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x2
000943368 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x3
000943368 980__ $$aconf
000943368 980__ $$aVDB
000943368 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000943368 980__ $$aI:(DE-588b)4597118-3
000943368 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000943368 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000943368 980__ $$aUNRESTRICTED