000943384 001__ 943384
000943384 005__ 20240712112827.0
000943384 0247_ $$2doi$$a10.1016/j.jelechem.2023.117186
000943384 0247_ $$2Handle$$a2128/34002
000943384 0247_ $$2WOS$$aWOS:000926279600001
000943384 037__ $$aFZJ-2023-00979
000943384 082__ $$a620
000943384 1001_ $$0P:(DE-HGF)0$$aKumar, Abhishek$$b0$$eCorresponding author
000943384 245__ $$aCorrelation of hierarchical porosity in nanoporous gold with the mass transport of electron transfer-coupled-chemical reactions
000943384 260__ $$bElsevier$$c2023
000943384 3367_ $$2DRIVER$$aarticle
000943384 3367_ $$2DataCite$$aOutput Types/Journal article
000943384 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1677501486_26873
000943384 3367_ $$2BibTeX$$aARTICLE
000943384 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000943384 3367_ $$00$$2EndNote$$aJournal Article
000943384 520__ $$aOptimization of mass transfer within a porous material is a highly promising strategy to improve the efficiency of electrode reactions. Herein, nanoporous gold (NPG) modified gold electrode is investigated to study the mass transport of ascorbic acid (AA), which oxidation process is characterized by an electrochemical coupled 1st order chemical reaction, commonly termed as EC1 reaction. The template-assisted synthesis of NPG results into the formation of a highly pure and porous film of gold. However, the surface porosity of NPG depends on the choice of electrodeposition parameters, such as deposition time (td) and potential (Ed) and the size of the substrate. Such porosity variation of NPG strongly influences the voltammetric profile of AA anodic reaction, displaying sigmoidal, non-symmetric and symmetric peak features. The analysis of mass transport behaviour of AA reveals a combination of diffusion and thin layer EC1 mechanism, predominance of which is determined by the Ed and td selected for NPG synthesis, as well as the size of the Au substrate. The mass transport of AA on NPG prepared on Au microelectrodes experienced a significant diffusion from bulk solution, owing to the larger pores, which permits the easier exchange of redox species between the NPG volume and the bulk solution. On the contrary, mass transport of AA on NPG deposited on big Au electrode has a significant contribution of thin layer diffusion, attributed to the smaller surface pores of NPG, which limits the exchange of AA and its oxidized form from the bulk solution.
000943384 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000943384 7001_ $$0P:(DE-HGF)0$$aBettinger, Mathieu F.$$b1
000943384 7001_ $$0P:(DE-Juel1)169490$$aVibhu, Vaibhav$$b2
000943384 7001_ $$0P:(DE-HGF)0$$aBouvet, Marcel$$b3
000943384 7001_ $$0P:(DE-HGF)0$$aMeunier-Prest, Rita$$b4$$eCorresponding author
000943384 773__ $$0PERI:(DE-600)1491150-4$$a10.1016/j.jelechem.2023.117186$$p117186$$tJournal of electroanalytical chemistry$$v931$$x1572-6657$$y2023
000943384 8564_ $$uhttps://juser.fz-juelich.de/record/943384/files/Revise%20Manuscript%20draft_VV.pdf$$yOpenAccess
000943384 8564_ $$uhttps://juser.fz-juelich.de/record/943384/files/revise%20Supporting%20information%20file.pdf$$yOpenAccess
000943384 909CO $$ooai:juser.fz-juelich.de:943384$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000943384 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, Dijon Cedex 21078, France$$b0
000943384 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Université Bourgogne$$b1
000943384 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169490$$aForschungszentrum Jülich$$b2$$kFZJ
000943384 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Université Bourgogne$$b3
000943384 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Université Bourgogne$$b4
000943384 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000943384 9141_ $$y2023
000943384 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-29
000943384 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-29
000943384 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000943384 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-29$$wger
000943384 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-29
000943384 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-29
000943384 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-29
000943384 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-29
000943384 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROANAL CHEM : 2022$$d2023-08-29
000943384 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-29
000943384 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-29
000943384 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-29
000943384 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-29
000943384 920__ $$lyes
000943384 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000943384 9801_ $$aFullTexts
000943384 980__ $$ajournal
000943384 980__ $$aVDB
000943384 980__ $$aUNRESTRICTED
000943384 980__ $$aI:(DE-Juel1)IEK-9-20110218
000943384 981__ $$aI:(DE-Juel1)IET-1-20110218