001     943384
005     20240712112827.0
024 7 _ |a 10.1016/j.jelechem.2023.117186
|2 doi
024 7 _ |a 2128/34002
|2 Handle
024 7 _ |a WOS:000926279600001
|2 WOS
037 _ _ |a FZJ-2023-00979
082 _ _ |a 620
100 1 _ |a Kumar, Abhishek
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Correlation of hierarchical porosity in nanoporous gold with the mass transport of electron transfer-coupled-chemical reactions
260 _ _ |c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1677501486_26873
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Optimization of mass transfer within a porous material is a highly promising strategy to improve the efficiency of electrode reactions. Herein, nanoporous gold (NPG) modified gold electrode is investigated to study the mass transport of ascorbic acid (AA), which oxidation process is characterized by an electrochemical coupled 1st order chemical reaction, commonly termed as EC1 reaction. The template-assisted synthesis of NPG results into the formation of a highly pure and porous film of gold. However, the surface porosity of NPG depends on the choice of electrodeposition parameters, such as deposition time (td) and potential (Ed) and the size of the substrate. Such porosity variation of NPG strongly influences the voltammetric profile of AA anodic reaction, displaying sigmoidal, non-symmetric and symmetric peak features. The analysis of mass transport behaviour of AA reveals a combination of diffusion and thin layer EC1 mechanism, predominance of which is determined by the Ed and td selected for NPG synthesis, as well as the size of the Au substrate. The mass transport of AA on NPG prepared on Au microelectrodes experienced a significant diffusion from bulk solution, owing to the larger pores, which permits the easier exchange of redox species between the NPG volume and the bulk solution. On the contrary, mass transport of AA on NPG deposited on big Au electrode has a significant contribution of thin layer diffusion, attributed to the smaller surface pores of NPG, which limits the exchange of AA and its oxidized form from the bulk solution.
536 _ _ |a 1232 - Power-based Fuels and Chemicals (POF4-123)
|0 G:(DE-HGF)POF4-1232
|c POF4-123
|f POF IV
|x 0
700 1 _ |a Bettinger, Mathieu F.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Vibhu, Vaibhav
|0 P:(DE-Juel1)169490
|b 2
700 1 _ |a Bouvet, Marcel
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Meunier-Prest, Rita
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 _ _ |a 10.1016/j.jelechem.2023.117186
|0 PERI:(DE-600)1491150-4
|p 117186
|t Journal of electroanalytical chemistry
|v 931
|y 2023
|x 1572-6657
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/943384/files/Revise%20Manuscript%20draft_VV.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/943384/files/revise%20Supporting%20information%20file.pdf
909 C O |o oai:juser.fz-juelich.de:943384
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, Dijon Cedex 21078, France
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Université Bourgogne
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169490
910 1 _ |a Université Bourgogne
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Université Bourgogne
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1232
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ELECTROANAL CHEM : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21