000943387 001__ 943387
000943387 005__ 20230228121556.0
000943387 0247_ $$2doi$$a10.1002/adem.202200574
000943387 0247_ $$2ISSN$$a1438-1656
000943387 0247_ $$2ISSN$$a1527-2648
000943387 0247_ $$2Handle$$a2128/33793
000943387 0247_ $$2WOS$$aWOS:000854299800001
000943387 037__ $$aFZJ-2023-00981
000943387 082__ $$a660
000943387 1001_ $$00000-0003-0795-5777$$aPrakash, Aruna$$b0$$eCorresponding author
000943387 245__ $$aAutomated Analysis of Continuum Fields from Atomistic Simulations Using Statistical Machine Learning
000943387 260__ $$aFrankfurt, M.$$bDeutsche Gesellschaft für Materialkunde$$c2022
000943387 3367_ $$2DRIVER$$aarticle
000943387 3367_ $$2DataCite$$aOutput Types/Journal article
000943387 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674804682_20490
000943387 3367_ $$2BibTeX$$aARTICLE
000943387 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000943387 3367_ $$00$$2EndNote$$aJournal Article
000943387 520__ $$aAtomistic simulations of the molecular dynamics/statics kind are regularly used to study small-scale plasticity. Contemporary simulations are performed with tens to hundreds of millions of atoms, with snapshots of these configurations written out at regular intervals for further analysis. Continuum scale constitutive models for material behavior can benefit from information on the atomic scale, in particular in terms of the deformation mechanisms, the accommodation of the total strain, and partitioning of stress and strain fields in individual grains. Herein, a methodology is developed using statistical data mining and machine learning algorithms to automate the analysis of continuum field variables in atomistic simulations. Three important field variables are focused on: total strain, elastic strain, and microrotation. The results show that the elastic strain in individual grains exhibits a unimodal lognormal distribution, while the total strain and microrotation fields evidence a multimodal distribution. The peaks in the distribution of total strain are identified with a Gaussian mixture model and methods to circumvent overfitting problems are presented. Subsequently, the identified peaks are evaluated in terms of deformation mechanisms in a grain, which, e.g., helps to quantify the strain for which individual deformation mechanisms are responsible. The overall statistics of the distributions over all grains are an important input for higher scale models, which ultimately also helps to be able to quantitatively discuss the implications for information transfer to phenomenological models.
000943387 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000943387 536__ $$0G:(EU-Grant)759419$$aMuDiLingo - A Multiscale Dislocation Language for Data-Driven Materials Science (759419)$$c759419$$fERC-2017-STG$$x1
000943387 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000943387 7001_ $$0P:(DE-Juel1)186075$$aSandfeld, Stefan$$b1$$ufzj
000943387 773__ $$0PERI:(DE-600)2016980-2$$a10.1002/adem.202200574$$gVol. 24, no. 12, p. 2200574 -$$n12$$p2200574 -$$tAdvanced engineering materials$$v24$$x1438-1656$$y2022
000943387 8564_ $$uhttps://juser.fz-juelich.de/record/943387/files/Adv%20Eng%20Mater%20-%202022%20-%20Prakash%20-%20Automated%20Analysis%20of%20Continuum%20Fields%20from%20Atomistic%20Simulations%20Using%20Statistical.pdf$$yOpenAccess
000943387 909CO $$ooai:juser.fz-juelich.de:943387$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000943387 9101_ $$0I:(DE-HGF)0$$60000-0003-0795-5777$$aExternal Institute$$b0$$kExtern
000943387 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186075$$aForschungszentrum Jülich$$b1$$kFZJ
000943387 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000943387 9141_ $$y2022
000943387 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000943387 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
000943387 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-12
000943387 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENG MATER : 2021$$d2022-11-12
000943387 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000943387 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-12$$wger
000943387 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
000943387 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000943387 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-12
000943387 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000943387 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000943387 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000943387 920__ $$lyes
000943387 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x0
000943387 980__ $$ajournal
000943387 980__ $$aVDB
000943387 980__ $$aUNRESTRICTED
000943387 980__ $$aI:(DE-Juel1)IAS-9-20201008
000943387 9801_ $$aFullTexts