001     943387
005     20230228121556.0
024 7 _ |a 10.1002/adem.202200574
|2 doi
024 7 _ |a 1438-1656
|2 ISSN
024 7 _ |a 1527-2648
|2 ISSN
024 7 _ |a 2128/33793
|2 Handle
024 7 _ |a WOS:000854299800001
|2 WOS
037 _ _ |a FZJ-2023-00981
082 _ _ |a 660
100 1 _ |a Prakash, Aruna
|0 0000-0003-0795-5777
|b 0
|e Corresponding author
245 _ _ |a Automated Analysis of Continuum Fields from Atomistic Simulations Using Statistical Machine Learning
260 _ _ |a Frankfurt, M.
|c 2022
|b Deutsche Gesellschaft für Materialkunde
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674804682_20490
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Atomistic simulations of the molecular dynamics/statics kind are regularly used to study small-scale plasticity. Contemporary simulations are performed with tens to hundreds of millions of atoms, with snapshots of these configurations written out at regular intervals for further analysis. Continuum scale constitutive models for material behavior can benefit from information on the atomic scale, in particular in terms of the deformation mechanisms, the accommodation of the total strain, and partitioning of stress and strain fields in individual grains. Herein, a methodology is developed using statistical data mining and machine learning algorithms to automate the analysis of continuum field variables in atomistic simulations. Three important field variables are focused on: total strain, elastic strain, and microrotation. The results show that the elastic strain in individual grains exhibits a unimodal lognormal distribution, while the total strain and microrotation fields evidence a multimodal distribution. The peaks in the distribution of total strain are identified with a Gaussian mixture model and methods to circumvent overfitting problems are presented. Subsequently, the identified peaks are evaluated in terms of deformation mechanisms in a grain, which, e.g., helps to quantify the strain for which individual deformation mechanisms are responsible. The overall statistics of the distributions over all grains are an important input for higher scale models, which ultimately also helps to be able to quantitatively discuss the implications for information transfer to phenomenological models.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a MuDiLingo - A Multiscale Dislocation Language for Data-Driven Materials Science (759419)
|0 G:(EU-Grant)759419
|c 759419
|f ERC-2017-STG
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Sandfeld, Stefan
|0 P:(DE-Juel1)186075
|b 1
|u fzj
773 _ _ |a 10.1002/adem.202200574
|g Vol. 24, no. 12, p. 2200574 -
|0 PERI:(DE-600)2016980-2
|n 12
|p 2200574 -
|t Advanced engineering materials
|v 24
|y 2022
|x 1438-1656
856 4 _ |u https://juser.fz-juelich.de/record/943387/files/Adv%20Eng%20Mater%20-%202022%20-%20Prakash%20-%20Automated%20Analysis%20of%20Continuum%20Fields%20from%20Atomistic%20Simulations%20Using%20Statistical.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:943387
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0003-0795-5777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)186075
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENG MATER : 2021
|d 2022-11-12
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-9-20201008
|k IAS-9
|l Materials Data Science and Informatics
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-9-20201008
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21