000943388 001__ 943388
000943388 005__ 20240711092254.0
000943388 0247_ $$2doi$$a10.1016/j.msea.2019.138295
000943388 0247_ $$2ISSN$$a0921-5093
000943388 0247_ $$2ISSN$$a1873-4936
000943388 0247_ $$2Handle$$a2128/33800
000943388 0247_ $$2WOS$$aWOS:000500373800018
000943388 037__ $$aFZJ-2023-00982
000943388 082__ $$a530
000943388 1001_ $$0P:(DE-HGF)0$$aSamaee, Vahid$$b0$$eCorresponding author
000943388 245__ $$aDislocation structures and the role of grain boundaries in cyclically deformed Ni micropillars
000943388 260__ $$aAmsterdam$$bElsevier$$c2020
000943388 3367_ $$2DRIVER$$aarticle
000943388 3367_ $$2DataCite$$aOutput Types/Journal article
000943388 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674823511_22355
000943388 3367_ $$2BibTeX$$aARTICLE
000943388 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000943388 3367_ $$00$$2EndNote$$aJournal Article
000943388 520__ $$aTransmission electron microscopy and finite element-based dislocation simulations were combined to study the development of dislocation microstructures after cyclic deformation of single crystal and bicrystal Ni micropillars oriented for multi-slip. A direct correlation between large accumulation of plastic strain and the presence of dislocation cell walls in the single crystal micropillars was observed, while the presence of the grain boundary hampered the formation of wall-like structures in agreement with a smaller accumulated plastic strain. Automated crystallographic orientation and nanostrain mapping using transmission electron microscopy revealed the presence of lattice heterogeneities associated to the cell walls including long range elastic strain fields. By combining the nanostrain mapping with an inverse modelling approach, information about dislocation density, line orientation and Burgers vector direction was derived, which is not accessible otherwise in such dense dislocation structures. Simulations showed that the image forces associated with the grain boundary in this specific bicrystal configuration have only a minor influence on dislocation behavior. Thus, the reduced occurrence of “mature” cell walls in the bicrystal can be attributed to the available volume, which is too small to accommodate cell structures.
000943388 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000943388 536__ $$0G:(EU-Grant)759419$$aMuDiLingo - A Multiscale Dislocation Language for Data-Driven Materials Science (759419)$$c759419$$fERC-2017-STG$$x1
000943388 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000943388 7001_ $$0P:(DE-Juel1)186075$$aSandfeld, Stefan$$b1$$ufzj
000943388 7001_ $$0P:(DE-HGF)0$$aIdrissi, Hosni$$b2
000943388 7001_ $$0P:(DE-HGF)0$$aGroten, Jonas$$b3
000943388 7001_ $$0P:(DE-HGF)0$$aPardoen, Thomas$$b4
000943388 7001_ $$0P:(DE-Juel1)179598$$aSchwaiger, Ruth$$b5$$ufzj
000943388 7001_ $$0P:(DE-HGF)0$$aSchryvers, Dominique$$b6
000943388 773__ $$0PERI:(DE-600)2012154-4$$a10.1016/j.msea.2019.138295$$gVol. 769, p. 138295 -$$p138295 -$$tMaterials science and engineering / A$$v769$$x0921-5093$$y2020
000943388 8564_ $$uhttps://juser.fz-juelich.de/record/943388/files/1-s2.0-S0921509319310810-main.pdf$$yOpenAccess
000943388 909CO $$ooai:juser.fz-juelich.de:943388$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000943388 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186075$$aForschungszentrum Jülich$$b1$$kFZJ
000943388 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179598$$aForschungszentrum Jülich$$b5$$kFZJ
000943388 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000943388 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000943388 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000943388 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-17
000943388 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000943388 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-17
000943388 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-17
000943388 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMAT SCI ENG A-STRUCT : 2021$$d2022-11-17
000943388 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-17
000943388 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000943388 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-17
000943388 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAT SCI ENG A-STRUCT : 2021$$d2022-11-17
000943388 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-17
000943388 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000943388 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000943388 920__ $$lyes
000943388 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x0
000943388 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x1
000943388 9801_ $$aFullTexts
000943388 980__ $$ajournal
000943388 980__ $$aVDB
000943388 980__ $$aUNRESTRICTED
000943388 980__ $$aI:(DE-Juel1)IAS-9-20201008
000943388 980__ $$aI:(DE-Juel1)IEK-2-20101013
000943388 981__ $$aI:(DE-Juel1)IMD-1-20101013