Home > Publications database > Dislocation structures and the role of grain boundaries in cyclically deformed Ni micropillars > print |
001 | 943388 | ||
005 | 20240711092254.0 | ||
024 | 7 | _ | |a 10.1016/j.msea.2019.138295 |2 doi |
024 | 7 | _ | |a 0921-5093 |2 ISSN |
024 | 7 | _ | |a 1873-4936 |2 ISSN |
024 | 7 | _ | |a 2128/33800 |2 Handle |
024 | 7 | _ | |a WOS:000500373800018 |2 WOS |
037 | _ | _ | |a FZJ-2023-00982 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Samaee, Vahid |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Dislocation structures and the role of grain boundaries in cyclically deformed Ni micropillars |
260 | _ | _ | |a Amsterdam |c 2020 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1674823511_22355 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Transmission electron microscopy and finite element-based dislocation simulations were combined to study the development of dislocation microstructures after cyclic deformation of single crystal and bicrystal Ni micropillars oriented for multi-slip. A direct correlation between large accumulation of plastic strain and the presence of dislocation cell walls in the single crystal micropillars was observed, while the presence of the grain boundary hampered the formation of wall-like structures in agreement with a smaller accumulated plastic strain. Automated crystallographic orientation and nanostrain mapping using transmission electron microscopy revealed the presence of lattice heterogeneities associated to the cell walls including long range elastic strain fields. By combining the nanostrain mapping with an inverse modelling approach, information about dislocation density, line orientation and Burgers vector direction was derived, which is not accessible otherwise in such dense dislocation structures. Simulations showed that the image forces associated with the grain boundary in this specific bicrystal configuration have only a minor influence on dislocation behavior. Thus, the reduced occurrence of “mature” cell walls in the bicrystal can be attributed to the available volume, which is too small to accommodate cell structures. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a MuDiLingo - A Multiscale Dislocation Language for Data-Driven Materials Science (759419) |0 G:(EU-Grant)759419 |c 759419 |f ERC-2017-STG |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Sandfeld, Stefan |0 P:(DE-Juel1)186075 |b 1 |u fzj |
700 | 1 | _ | |a Idrissi, Hosni |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Groten, Jonas |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Pardoen, Thomas |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Schwaiger, Ruth |0 P:(DE-Juel1)179598 |b 5 |u fzj |
700 | 1 | _ | |a Schryvers, Dominique |0 P:(DE-HGF)0 |b 6 |
773 | _ | _ | |a 10.1016/j.msea.2019.138295 |g Vol. 769, p. 138295 - |0 PERI:(DE-600)2012154-4 |p 138295 - |t Materials science and engineering / A |v 769 |y 2020 |x 0921-5093 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/943388/files/1-s2.0-S0921509319310810-main.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:943388 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)186075 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)179598 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2022-11-17 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-17 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b MAT SCI ENG A-STRUCT : 2021 |d 2022-11-17 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-17 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-17 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MAT SCI ENG A-STRUCT : 2021 |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-17 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-9-20201008 |k IAS-9 |l Materials Data Science and Informatics |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-2-20101013 |k IEK-2 |l Werkstoffstruktur und -eigenschaften |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-9-20201008 |
980 | _ | _ | |a I:(DE-Juel1)IEK-2-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-1-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|