000943409 001__ 943409
000943409 005__ 20230929112509.0
000943409 0247_ $$2doi$$a10.1029/2022JD036985
000943409 0247_ $$2ISSN$$a0148-0227
000943409 0247_ $$2ISSN$$a2156-2202
000943409 0247_ $$2ISSN$$a2169-897X
000943409 0247_ $$2ISSN$$a2169-8996
000943409 0247_ $$2Handle$$a2128/33798
000943409 0247_ $$2WOS$$aWOS:000938835500012
000943409 037__ $$aFZJ-2023-00995
000943409 041__ $$aEnglish
000943409 082__ $$a550
000943409 1001_ $$00000-0002-6459-005X$$aVadas, Sharon L.$$b0$$eCorresponding author
000943409 245__ $$aSecondary Gravity Waves From the Stratospheric Polar Vortex Over ALOMAR Observatory on 12–14 January 2016: Observations and Modeling
000943409 260__ $$aHoboken, NJ$$bWiley$$c2023
000943409 3367_ $$2DRIVER$$aarticle
000943409 3367_ $$2DataCite$$aOutput Types/Journal article
000943409 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674822391_21430
000943409 3367_ $$2BibTeX$$aARTICLE
000943409 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000943409 3367_ $$00$$2EndNote$$aJournal Article
000943409 520__ $$aWe analyze the gravity waves (GWs) observed by a Rayleigh lidar at the Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR) (16.08°E, 69.38°N) in Norway at z ∼ 20–85 km on 12–14 January 2016. These GWs propagate upward and downward away from zknee = 57 and 64 km at a horizontally-displaced location with periods τr ∼ 5–10 hr and vertical wavelengths λz ∼ 9–20 km. Because the hodographs are distorted, we introduce an alternative method to determine the GW parameters. We find that these GWs are medium to large-scale, and propagate north/northwestward with intrinsic horizontal phase speeds of ∼35–65 m/s. Since the GW parameters are similar above and below zknee, these are secondary GWs created by local body forces (LBFs) south/southeast of ALOMAR. We use the nudged HIAMCM (HIgh Altitude Mechanistic general Circulation Model) to model these events. Remarkably, the model reproduces similar GW structures over ALOMAR, with zknee = 58 and 66 km. The event #1 GWs are created by a LBF at ∼35°E, ∼60°N, and z ∼ 58 km. This LBF is created by the breaking and dissipation of primary GWs generated and amplified by the imbalance of the polar night jet below the wind maximum; the primary GWs for this event are created at z ∼ 25–35 km at 49–53°N. We also find that the HIAMCM GWs agree well with those observed by the Atmospheric InfraRed Sounder (AIRS) satellite, and that those AIRS GWs south and north of ∼50°N over Europe are mainly mountain waves and GWs from the polar vortex, respectively.
000943409 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000943409 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000943409 7001_ $$00000-0001-7883-3254$$aBecker, Erich$$b1
000943409 7001_ $$0P:(DE-HGF)0$$aBossert, Katrina$$b2
000943409 7001_ $$0P:(DE-HGF)0$$aBaumgarten, Gerd$$b3
000943409 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b4
000943409 7001_ $$00000-0002-7928-0804$$aHarvey, V. Lynn$$b5
000943409 773__ $$0PERI:(DE-600)2969341-X$$a10.1029/2022JD036985$$gVol. 128, no. 2$$n2$$pe2022JD036985$$tJGR / Atmospheres$$v128$$x0148-0227$$y2023
000943409 8564_ $$uhttps://juser.fz-juelich.de/record/943409/files/933497_1_merged_pdf_10380732_rkt5t5.pdf$$yOpenAccess
000943409 909CO $$ooai:juser.fz-juelich.de:943409$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000943409 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b4$$kFZJ
000943409 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000943409 9141_ $$y2023
000943409 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-15
000943409 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-15$$wger
000943409 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-15
000943409 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000943409 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ GEOPHYS RES-ATMOS : 2022$$d2023-08-26
000943409 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
000943409 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
000943409 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
000943409 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
000943409 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-26
000943409 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-26
000943409 920__ $$lyes
000943409 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000943409 980__ $$ajournal
000943409 980__ $$aVDB
000943409 980__ $$aUNRESTRICTED
000943409 980__ $$aI:(DE-Juel1)JSC-20090406
000943409 9801_ $$aFullTexts