001     943409
005     20260122224323.0
024 7 _ |2 doi
|a 10.1029/2022JD036985
024 7 _ |2 ISSN
|a 0148-0227
024 7 _ |2 ISSN
|a 2156-2202
024 7 _ |2 ISSN
|a 2169-897X
024 7 _ |2 ISSN
|a 2169-8996
024 7 _ |2 Handle
|a 2128/33798
024 7 _ |2 WOS
|a WOS:000938835500012
037 _ _ |a FZJ-2023-00995
041 _ _ |a English
082 _ _ |a 550
100 1 _ |0 0000-0002-6459-005X
|a Vadas, Sharon L.
|b 0
|e Corresponding author
245 _ _ |a Secondary Gravity Waves From the Stratospheric Polar Vortex Over ALOMAR Observatory on 12–14 January 2016: Observations and Modeling
260 _ _ |a Hoboken, NJ
|b Wiley
|c 2023
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1674822391_21430
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a We analyze the gravity waves (GWs) observed by a Rayleigh lidar at the Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR) (16.08°E, 69.38°N) in Norway at z ∼ 20–85 km on 12–14 January 2016. These GWs propagate upward and downward away from zknee = 57 and 64 km at a horizontally-displaced location with periods τr ∼ 5–10 hr and vertical wavelengths λz ∼ 9–20 km. Because the hodographs are distorted, we introduce an alternative method to determine the GW parameters. We find that these GWs are medium to large-scale, and propagate north/northwestward with intrinsic horizontal phase speeds of ∼35–65 m/s. Since the GW parameters are similar above and below zknee, these are secondary GWs created by local body forces (LBFs) south/southeast of ALOMAR. We use the nudged HIAMCM (HIgh Altitude Mechanistic general Circulation Model) to model these events. Remarkably, the model reproduces similar GW structures over ALOMAR, with zknee = 58 and 66 km. The event #1 GWs are created by a LBF at ∼35°E, ∼60°N, and z ∼ 58 km. This LBF is created by the breaking and dissipation of primary GWs generated and amplified by the imbalance of the polar night jet below the wind maximum; the primary GWs for this event are created at z ∼ 25–35 km at 49–53°N. We also find that the HIAMCM GWs agree well with those observed by the Atmospheric InfraRed Sounder (AIRS) satellite, and that those AIRS GWs south and north of ∼50°N over Europe are mainly mountain waves and GWs from the polar vortex, respectively.
536 _ _ |0 G:(DE-HGF)POF4-5111
|a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|c POF4-511
|f POF IV
|x 0
536 _ _ |0 G:(DE-Juel-1)SDLCS
|a Simulation and Data Lab Climate Science
|c SDLCS
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |0 0000-0001-7883-3254
|a Becker, Erich
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Bossert, Katrina
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Baumgarten, Gerd
|b 3
700 1 _ |0 P:(DE-Juel1)129125
|a Hoffmann, Lars
|b 4
700 1 _ |0 0000-0002-7928-0804
|a Harvey, V. Lynn
|b 5
773 _ _ |0 PERI:(DE-600)2969341-X
|a 10.1029/2022JD036985
|g Vol. 128, no. 2
|n 2
|p e2022JD036985
|t JGR / Atmospheres
|v 128
|x 0148-0227
|y 2023
856 4 _ |u https://juser.fz-juelich.de/record/943409/files/933497_1_merged_pdf_10380732_rkt5t5.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:943409
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129125
|a Forschungszentrum Jülich
|b 4
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-511
|1 G:(DE-HGF)POF4-510
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5111
|a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|v Enabling Computational- & Data-Intensive Science and Engineering
|x 0
914 1 _ |y 2023
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2022-11-15
915 _ _ |0 StatID:(DE-HGF)3001
|2 StatID
|a DEAL Wiley
|d 2022-11-15
|w ger
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2022-11-15
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J GEOPHYS RES-ATMOS : 2022
|d 2023-08-26
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2023-08-26
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2023-08-26
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2023-08-26
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2023-08-26
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-26
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2023-08-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21