000943410 001__ 943410
000943410 005__ 20230228121557.0
000943410 037__ $$aFZJ-2023-00996
000943410 041__ $$aEnglish
000943410 1001_ $$0P:(DE-Juel1)125593$$aHardtdegen, Hilde$$b0$$eCorresponding author$$ufzj
000943410 1112_ $$aInternational Workshop on Nitride Semiconductors$$cBerlin$$d2022-10-09 - 2022-10-14$$gIWN 2022$$wGermany
000943410 245__ $$aBeyond Current Achievements in III-Nitride nano-LED applications
000943410 260__ $$c2022
000943410 3367_ $$033$$2EndNote$$aConference Paper
000943410 3367_ $$2DataCite$$aOther
000943410 3367_ $$2BibTeX$$aINPROCEEDINGS
000943410 3367_ $$2DRIVER$$aconferenceObject
000943410 3367_ $$2ORCID$$aLECTURE_SPEECH
000943410 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1674732624_22925$$xAfter Call
000943410 520__ $$aNano light emitting diodes (nano-LEDs) could play an important role as key components for next generation on chip optical communication, optical computing technologies, highly resolved illumination microscopy, advanced “near” field lithographical techniques and many others [1–3]. In this contribution we will first provide a general outlook of nano-LED technology related to its emerging applications in green IT and the challenges facing nano-LED fabrication and characteristics. Then we will present nano-LEDs integrated into a vertical device layout serving as a testing platform for correlative simultaneous Raman spectroscopy investigations in a bottom-up configuration. The platform enables the induction of structural / phase changes and their simultaneous optical characterization. The nano-LEDs, which emitted optical pulses in the range from ~20 ns up to 100 ns, are coupled with freestanding Ge1Sb2Te4 nano-membranes. The correlative studies reveal that the nano-LEDs locally initialize substantial changes in the nano-membrane phase i.e. state of the Ge1Sb2Te4. The presented results demonstrate the suitability and reliability of the vertically integrated nano-LEDs as a testing platform and for driving future on chip integrated electro-optic convertors. Hence, they represent a significant step forwards towards future optical computing techniques based on all optical switch/transmistor devices.[1] M. Xie, Y. Jiang, X. Gao, W. Cai, J. Yuan, H. Zhu, Y. Wang, X. Zeng, Z. Zhang, Y. Liu, and H. Amano, Adv. Eng. Mater. 2100582 (2021).[2] N. Franch, J. Canals, V. Moro, O. Alonso, S. Moreno, A. Vilà, J.D. Prades, J. Gülink, H.S. Wasisto, A. Waag, and Á. Diéguez, in Nov. Opt. Syst. Methods, Appl. XXII, edited by C.F. Hahlweg and J.R. Mulley (SPIE, 2019), p. 23.[3] M. Mikulics, Z. Sofer, A. Winden, S. Trellenkamp, B. Förster, J. Mayer, and H.H. Hardtdegen, Nanoscale Adv. 2, 5421 (2020).
000943410 536__ $$0G:(DE-HGF)POF4-5353$$a5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000943410 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b1$$ufzj
000943410 7001_ $$0P:(DE-Juel1)128613$$aMikulics, Martin$$b2$$ufzj
000943410 909CO $$ooai:juser.fz-juelich.de:943410$$pVDB
000943410 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich$$b0$$kFZJ
000943410 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b1$$kFZJ
000943410 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128613$$aForschungszentrum Jülich$$b2$$kFZJ
000943410 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5353$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000943410 9141_ $$y2022
000943410 920__ $$lyes
000943410 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x0
000943410 980__ $$aconf
000943410 980__ $$aVDB
000943410 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000943410 980__ $$aUNRESTRICTED