001     943410
005     20230228121557.0
037 _ _ |a FZJ-2023-00996
041 _ _ |a English
100 1 _ |a Hardtdegen, Hilde
|0 P:(DE-Juel1)125593
|b 0
|e Corresponding author
|u fzj
111 2 _ |a International Workshop on Nitride Semiconductors
|g IWN 2022
|c Berlin
|d 2022-10-09 - 2022-10-14
|w Germany
245 _ _ |a Beyond Current Achievements in III-Nitride nano-LED applications
260 _ _ |c 2022
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1674732624_22925
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Nano light emitting diodes (nano-LEDs) could play an important role as key components for next generation on chip optical communication, optical computing technologies, highly resolved illumination microscopy, advanced “near” field lithographical techniques and many others [1–3]. In this contribution we will first provide a general outlook of nano-LED technology related to its emerging applications in green IT and the challenges facing nano-LED fabrication and characteristics. Then we will present nano-LEDs integrated into a vertical device layout serving as a testing platform for correlative simultaneous Raman spectroscopy investigations in a bottom-up configuration. The platform enables the induction of structural / phase changes and their simultaneous optical characterization. The nano-LEDs, which emitted optical pulses in the range from ~20 ns up to 100 ns, are coupled with freestanding Ge1Sb2Te4 nano-membranes. The correlative studies reveal that the nano-LEDs locally initialize substantial changes in the nano-membrane phase i.e. state of the Ge1Sb2Te4. The presented results demonstrate the suitability and reliability of the vertically integrated nano-LEDs as a testing platform and for driving future on chip integrated electro-optic convertors. Hence, they represent a significant step forwards towards future optical computing techniques based on all optical switch/transmistor devices.[1] M. Xie, Y. Jiang, X. Gao, W. Cai, J. Yuan, H. Zhu, Y. Wang, X. Zeng, Z. Zhang, Y. Liu, and H. Amano, Adv. Eng. Mater. 2100582 (2021).[2] N. Franch, J. Canals, V. Moro, O. Alonso, S. Moreno, A. Vilà, J.D. Prades, J. Gülink, H.S. Wasisto, A. Waag, and Á. Diéguez, in Nov. Opt. Syst. Methods, Appl. XXII, edited by C.F. Hahlweg and J.R. Mulley (SPIE, 2019), p. 23.[3] M. Mikulics, Z. Sofer, A. Winden, S. Trellenkamp, B. Förster, J. Mayer, and H.H. Hardtdegen, Nanoscale Adv. 2, 5421 (2020).
536 _ _ |a 5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)
|0 G:(DE-HGF)POF4-5353
|c POF4-535
|f POF IV
|x 0
700 1 _ |a Mayer, Joachim
|0 P:(DE-Juel1)130824
|b 1
|u fzj
700 1 _ |a Mikulics, Martin
|0 P:(DE-Juel1)128613
|b 2
|u fzj
909 C O |o oai:juser.fz-juelich.de:943410
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)125593
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130824
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)128613
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5353
|x 0
914 1 _ |y 2022
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21