=

= pEE s p

':-‘

pa= gl e

- -mn.-;.ﬁwii-_‘hmﬁm“

L3k

GPU Programming

h

=

e 8 B e e B o |
P Ry

P ir G T T
T .

3

e e e e 5

9 0 s 5 g (9 (B B
o »f' '’ -"

P

!i..‘,
1
E

Z

HPC: Modern Architectures & Trends MA-INF 1106, Bonn

20 January 2023 | Dr. Andreas Herten | Accelerating Devices Lab, Forschungszentrum Jiilich

Member of the Helmholtz Association

g JULICH | 5 upome

Forschungszentrum CENTRE

Outline

Introduction
GPU History
JUPITER

JUWELS
JUWELS Cluster
JUWELS Booster

Platform
Comparisons
GPU Architecture
Summary

Member of the Helmholtz Association

Programming GPUs
Libraries
Directives
CUDA C/C++
Kernels
Grid, Blocks
Memory Management
Unified Memory
Performance Analysis

Beyond CUDA
Cooperative Groups
MPI
Thrust
Standard Parallelism
HIP
SYCL

MORE MODELSI!'J JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

20 January 2023 Slide 1174

History of GPUs

A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 2174 J Forschungszentrum

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

History of GPUs

A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 2174

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

History of GPUs

A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

2007 CUDA

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 2174 J Forschungszentrum

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

History of GPUs

A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

2007 CUDA

2009 OpenCL

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 2174 J Forschungszentrum

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

History of GPUs

A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

2007 CUDA

2009 OpenCL

2022 Top 500: 32 % with GPUs (#1, #2; 7 of top 10) [4], Green 500: 9 of top 10 with GPUs [5]

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 2174 J Forschungszentrum

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

History of GPUs

A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

2007 CUDA

2009 OpenCL

2022 Top 500: 32 % with GPUs (#1, #2; 7 of top 10) [4], Green 500: 9 of top 10 with GPUs [5]

2022 EE: Leonardo (250 PFLOP/s*, Italy), NVIDIA GPUs; LUMI (552 PFLOP/s, Finland), AMD GPUs
==: Frontier (Rmax = 1.102 EFLOP/s, ORNL), AMD GPUs

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 2174

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

History of GPUs

A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

2007 CUDA

2009 OpenCL

2022 Top 500: 32 % with GPUs (#1, #2; 7 of top 10) [4], Green 500: 9 of top 10 with GPUs [5]

2022 EE: Leonardo (250 PFLOP/s*, Italy), NVIDIA GPUs; LUMI (552 PFLOP/s, Finland), AMD GPUs

: Frontier (Rmax = 1.102 EFLOP/s, ORNL), AMD GPUs

: JUPITER (=~ 1EFLOR/s, [N®)

: Aurora (= 2 EFLOP/s, Argonne), Intel GPUs; El Capitan (= 2 EFLOP/s, LLNL), AMD GPUs

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 2174 J Forschungszentrum

Soon

&

JULICH
SUPERCOMPUTING
CENTRE

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

JUPITER

Recent Developments

Jiilich (JSC) selected as Hosting Entity for first European Exascale supercomputer:
JUPITER

System procured together with EuroHPC JU

After long preparation, RFI finally published on Monday!

Now we start the exciting negotiations...

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 3174 J Forschungszentrum

P EuroHPC
.

European High Performance Computing Joint Undertaking

GENERAL INVITATION TO TENDER
EUROHPC/2023/CD/0001

Descriptive Document
Acquisition, delivery, installation and hardware and software
maintenance of JUPITER Exascale Supercomputer for the European High
Performance Computing Joint Undertaking (EuroHPC)

Desrptv document EURONPC/2023/cD/0001 e
. .
@) JULICH | &2
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 3174 Forschungszentrum | CENTRE

INe JUFIER SOTtwdre Components Imust enapie a aynamic IVISA arcnitecuure witnout sortwadre restricuons.
Scheduler, resource manager and MPI runtime, among others, must enable advanced dynamic MSA features
and deliver the features and benefits documented by the DEEP research projects.

For some control plane components (see above), JSC wishes to take advantage of its own xOPS software stack
complemented with components that are a result of the collaborative work developed in the ParaStation
consortium. Proposals for further (possibly module-specific) solutions that are optimized for the hardware
offered will also be accepted if the above requirements can be realized in a superior or equal manner.

Considering the core capabilities of JUPITER's hardware and software, the centre stage is taken by
accelerated devices: At the heart of JUPITER is the highly scalable Booster module, with the option of having
two accelerated, tightly connected modules, built on the same accelerator technologies and networks, if that
provides additional value. Given the technology developments in recent years, graphical processing unit
(GPU) based accelerators are expected to provide at least one exaflop of double precision floating point
performance as to the sustained HPL’s Rmax Within the aforementioned power footprint. Lower floating-point
precision will reach even higher performance numbers. Those accelerators are able to handle both classical
HPC and novel Al workloads and are well suited for HPDA. A high-bandwidth and low-latency interconnect
for the Booster will be required to provide network capabilities for highly parallel workloads and, at the same
time, fast access to the storage backends. Based on positive experience with the JUWELS Booster Dragonfly
topology that provides 200 Gbit per GPU (or 800 Gbit per node) this is considered also an appropriate

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 3174 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Status Quo Across Architectures

Performance

Theoretical Peak Performance, Double Precision

o .
3. 3 :
g108 ey gD s Oy o B 7420 (KNG T N
e}
3
T
(0]
INTEL Xeon CPUs ——
® . . NVIDIA Tesla GPUs —Jill—
102 - - - i T T < R R =
. . . AMD Radeon GPUs —@)—
5 . . i
o) S : : : : INTEL Xeon Phis —WF—
< o &
¥ + W ; ; ; ; ‘)
2008 2010 2012 2014 2016 2018 2020
End of Year
Member of the Helmholtz Association 20 January 2023 Slide 4174

Status Quo Across Architectures
Memory Bandwidth

Theoretical Peak Memory Bandwidth Comparison

Xeon Phi 7
H S o Tesa kBT B :
o) < :
3 .
102 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
)
INTEL Xeon CPUs ——
NVIDIA Tesla GPUs — il —
) S of .
0 &> Ga o . . .
@@'L 55‘55% W ¥ 3 * ! ‘ 3 AMD Radeon GPUs —@—
: : : : : INTEL Xeon Phis ——
10! L L L L L L L
2008 2010 2012 2014 2016 2018 2020
End of Year
Member of the Helmholtz Association 20 January 2023 Slide 4174

JUWELS Cluster - Jiilich’s Scalable System
= 2500 nodes with Intel Xeon CPUs (2 x 24 cores)
= 46 + 10 nodes with 4 NVIDIA Tesla V100 cards (16 GB memory)
= 10.4 (CPU) + 1.6 (GPU) PFLOP/s peak performance (Top500: #86)

@) JULICH| &5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 5174 Forschungszentrum CENTRE

JUWELS Booster - Scaling Higher!
= 936 nodes with AMD EPYC Rome CPUs (2 x 24 cores)
= Each with 4 NVIDIA A100 Ampere GPUs (each: Froarc ;_97‘5 TFLOP/s, 40 GB memory)
= InfiniBand DragonFly+ HDR-200 network; 4 x 200 Gbit/s per node

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 6174 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Top500 List Nov 2022:
= #1 Europe
= #8 World
= #4* Top/Green500

JUWELS Booster - Scaling Higher!
= 936 nodes with AMD EPYC Rome CPUs (2 x 24 cores)

= Each with 4 NVIDIA A100 Ampere GPUs (each: ""*/'*" 19> TFLOP /s, 40 GB memory)
= InfiniBand DragonFly+ HDR-200 network; 4 x 200 Gbit/s per node

9 JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Member of the Helmholtz Association 20 January 2023 Slide 6174

https://www.top500.org/lists/top500/2021/11/

Platform

CPU vs. GPU

A matter of specialties

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 8174 Forschungszentvum CENTRE

CPU vs. GPU

A matter of specialties

Transporting one Transporting many

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 8174 Forschungszentvum CENTRE

CPU vs. GPU

Chip

ALU

Control

Cache

Member of the Helmholtz Association

20 January 2023

Slide 9174

DRAM

@) JULICH | u=
SUPERCOMPUTING
Forschungszentrum | CENTRE

GPU Architecture Design

GPU optimized to hide latency
= Memory
= GPU has small (40 GB), but high-speed memory 1555 GB/s
= Stage data to GPU memory: via PCle 4 bus (32 GB/s)

Member of the Helmholtz Association 20 January 2023 Slide 10174

Control

HBM2
1555GB/s
DRAM

Device

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

GPU Architecture Design

GPU optimized to hide latency
= Memory
= GPU has small (40 GB), but high-speed memory 1555 GB/s
= Stage data to GPU memory: via PCle 4 bus (32 GB/s)

Member of the Helmholtz Association 20 January 2023 Slide 10174

Control

HBM2
1555GB/s
DRAM

Device

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

GPU Architecture Design

GPU optimized to hide latency
= Memory
= GPU has small (40 GB), but high-speed memory 1555 GB/s
= Stage data to GPU memory: via PCle 4 bus (32 GB/s)
= Stage automatically (Unified Memory), or manually

Host

- o -

Il

Device

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 10174

GPU Architecture Design

GPU optimized to hide latency
= Memory
= GPU has small (40 GB), but high-speed memory 1555 GB/s
= Stage data to GPU memory: via PCle 4 bus (32 GB/s)
= Stage automatically (Unified Memory), or manually
= Two engines: Overlap compute and copy

O

Member of the Helmholtz Association 20 January 2023 Slide 10174

9

Host

Control

JULICH

Forschungszentrum

Cache

DRAM

Device

JULICH
SUPERCOMPUTING
CENTRE

GPU Architecture Design

GPU optimized to hide latency
= Memory
= GPU has small (40 GB), but high-speed memory 1555 GB/s
= Stage data to GPU memory: via PCle 4 bus (32 GB/s)
= Stage automatically (Unified Memory), or manually
= Two engines: Overlap compute and copy

Copy

O

V100 Al100
32 GB RAM, 900 GB/s

Member of the Helmholtz Association 20 January 2023 Slide 10174

9

Host

Control

JULICH

Forschungszentrum

Cache

DRAM

Device

JULICH
SUPERCOMPUTING
CENTRE

GPU Architecture Design

GPU optimized to hide latency
= Memory

= GPU has small (40 GB), but high-speed memory 1555 GB/s

= Stage data to GPU memory: via PCle 4 bus (32 GB/s)
= Stage automatically (Unified Memory), or manually

= Two engines: Overlap compute and copy

Copy

= SIMT

V100
32 GB RAM, 900 GB/s

o OO 1T OO Ee)

Member of the Helmholtz Association 20 January 2023

Al100

Slide 10174

9

Host

Control

JULICH

Forschungszentrum

Cache

DRAM

Device

JULICH
SUPERCOMPUTING
CENTRE

SIMT

Scalar
SIMT = SIMD & SMT
Al + By = G
A + B = G
Al + B2 = |G
L] CPU: A3+ B3 = |G
= Single Instruction, Multiple Data (SIMD)
‘J JULICH JULICH
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 11174 Forschungszentrum CENTRE

SIMT

Vector
SIMT = SIMD ¢ SMT
Ao By Co
AL By C1
+ -
Ay By C,
= CPU: A B &

= Single Instruction, Multiple Data (SIMD)

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 11174 Forschungszentrum CENTRE

SIMT

Vector
SIMT = SIMD ¢ SMT
Ao By Co
AL By C1
+ -
Ay By C,
= CPU: A B &

= Single Instruction, Multiple Data (SIMD)
= Simultaneous Multithreading (SMT)

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 11174 Forschungszentrum CENTRE

SIMT

Vector
SIMT = SIMD ¢ SMT
Ao Bo Co
A By ¢
+ -
Ay B, C
L] CPU: As B3 C3

= Single Instruction, Multiple Data (SIMD)
= Simultaneous Multithreading (SMT)

SMT

Thread

Core
Thread

=

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 11174 Furschungszentvum CENTRE

SIMT

Vector
SIMT = SIMD ¢ SMT
Ao By Co
AL By G
n -
Ay By C,
= CPU: A B &
= Single Instruction, Multiple Data (SIMD) SMT
= Simultaneous Multithreading (SMT) —
= GPU: Single Instruction, Multiple Threads (SIMT) Core
] JULICH
Member of the Helmholtz Association 20 January 2023 slide 11174 ‘J :!rgunLgslzgrt! gléz_ErFSEOMPUT\NG

SIMT

Vector
SIMT = SIMD ¢ SMT - . C
Ay By Ci
N -
Ay B, C
L] CPU: As B3 C3
= Single Instruction, Multiple Data (SIMD) SMT
= Simultaneous Multithreading (SMT) —
= GPU: Single Instruction, Multiple Threads (SIMT) Core
SIMT

i

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 11174 J Forschungszentrum

SIMT

SIMT = SIMD © SMT

= CPU:
= Single Instruction, Multiple Data (SIMD)
= Simultaneous Multithreading (SMT)
= GPU: Single Instruction, Multiple Threads (SIMT)
= CPU core = GPU multiprocessor (SM)
= Working unit: set of threads (32, a warp)
= Fast switching of threads (large register file)

» Branching ifC*

Member of the Helmholtz Association 20 January 2023 Slide 11174

Vector
Ao Bo Co
A B (o)
+ -

Ay By C,
As B3 C3
SMT

Thread

Core

Thread
SIMT

i

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

SIMT

SIMT = SIMD © SMT

PCI Express 40 Hostnterface

NVLink

Member of the Helmholtz Association 20 January 2023 Slide 11174

1

!
:

1

NVLink

9

Vector
Ao Bo Co
A By G
+ =
Ay By C,
. A3 B3 G
—
—
Thread
Core
Thread
SIMT
oo .
J U L I c H JULICH
SUPERCOMPUTING
Forschungszentrum CENTRE

SIMT

SIMT = SIMD © SMT

PCI Express 40 Hostnterface

NVLink

Member of the Helmholtz Association 20 January 2023 Slide 11174

1

!
:

1

NVLink

9

Vector
Ay Bo Co
A By G
+ =
Ay By C,
. A3 B3 G
—
—
Thread
Core
Thread
SIMT
oo .
J U L I c H JULICH
SUPERCOMPUTING
Forschungszentrum CENTRE

SIMT

SIMT — SIMD @& SMT

Member of the Helmholtz Association

Multiprocessor

wrsz nraz
sz nrsz
sz sz
sz rsz

Warp Scheduler (32 threadicik)
Dispatch Unit (32 thread/clk)

Register Filo (16,384 x 32-bit)

Fpsa ez
Fpa2 Rz
Feaz ez
Fpa2 PPz
Fpa2 Rz
Fe32 ez
PPz FR3z
PPz ez

wrs2 sz PP Fesg
vsz raz PP Fpag
nvsz raz P ppsd
Intsz a2 FPad Fpag

TENSOR CORE
wrsz rsz P2 FPsd
sz sz FPad Fpag
sz sz FPad Fpad
rsz sz PPz Fesg

I

[Warp Scheduler (32 threadielkl

Dispatch Urit (32 threadicik)

sz rsz

wrsz raz

nrszrsz

sz rsz

Register File (16,384 x 32-bit)

Fpa2 ez

PP FR3z

FPa2 PPz

Feoa ez

Feaz ez

Fesa ez

Fpsa ez

Feaa ez

Fosa sz wrsz Fpaz Fpad
FPos sz wrsz Fesa esa
sz wraz Fpaa Fes2
sz sz s resd
TENSOR CORE
sz sz Fpsz Fes2
rszrsz P Fesd
rszrsz PP Fesd
sz sz Fpaz Fpaa

Fro

Fros

Fro

Fes

Warp Scheduler (32 threadicik)
Dispatch Unit (32 thread/clk)

Rogister File (16,384 x 32-bit)

TENSOR CORE

Warp Scheduler (32 threadicik)
Dispatch Urit (32 thrsadlclk)

Register File (16,384 x 32-bit)

TENSOR CORE

20 January 2023

Slide 11174

9

Vector

Ao

A

As

Bo Co

By G
+ =

By @

B3 &

Thread

Core
Thread

SIMT

11

L

JULICH | srcrconrumne

Forschungszentrum CENTRE

A100vs H100

Comparison of current vs. next generation

A100

v TSt
fUUTUUUOOO00Og i 3
@ L J ag‘

@) JULICH| 5
SUPERCOMPUTING
20 January 2023 Slide 12174 Forschungszentrum | CENTRE

Member of the Helmholtz Association

A100vs H100

Comparison of current vs. next generation

A100

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 12|74 Forschungszentvum CENTRE

A100vs H100

Comparison of current vs. next generation

Lonstucion cacne
WarpSchaduler 32 s
[rrr—

TENSOR CORE

TENSOR CORE

wrsawn o s 8

V2K L1 Dat Cach Shared Hamory

Member of the Helmholtz Association 20 January 2023

TENSOR CORE
4" GENERATION

TENSOR CORE
" GENERATION

‘Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory.

JULICH | srcrconrumne

Slide 12174 Forschungszentrum | CENTRE

CPU vs. GPU

Let’s summarize this!

/

Core™ i

Optimized for low latency

+

+
+
+
+

Large main memory

Fast clock rate

Large caches

Branch prediction

Powerful ALU

Relatively low memory bandwidth
Cache misses costly

Low performance per watt

Member of the Helmholtz Association 20 January 2023

Optimized for hlgh throughput

High bandwidth main memory
Latency tolerant (parallelism)
More compute resources

High performance per watt

— Limited memory capacity

— Low per-thread performance
— Extension card

+ o+

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Slide 13174 J Forschungszentrum

Programming GPUs

Preface: CPU

A simple CPU program!

SAXPY: y = aX + y, with single precision
Part of LAPACK BLAS Level 1
void saxpy(int n, float a, float * x, float * y) {
for (int 1 = 0; 1 < n; i++)
y[i] = a = x[i] + y[i];
}
int a = 42;
int n = 10;
float x[n], yInl;
// Fill x, y

saxpy(n, a, x, y);

Member of the Helmholtz Association 20 January 2023 Slide 15174

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

http://www.netlib.org/lapack/

Summary of Acceleration Possibilities

Application

Programming
Languages

Libraries Directives

Drop-in Easy Flexible
Acceleration Acceleration Acceleration

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 16174 J Forschungszentrum

Summary of Acceleration Possibilities

Application

Programming
Languages

Libraries Directives

Drop-in Easy Flexible
Acceleration Acceleration Acceleration

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 16174 J Forschungszentrum

Libraries _ _
Programming GPUs is easy:

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 17|74 Forschungszentrum CENTRE

Libraries _ _
Programming GPUs is easy:

Use applications & libraries

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 17|74 Forschungszentrum CENTRE

Libraries
Programming GPUs is easy:

Use applications & libraries

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 17174 Forschungszentrum CENTRE

13

Libraries
Programming GPUs is easy:

Use applications & libraries

CUSPARSE

CuBLAS

cuDNN

{A} ArRRAYFIRE

Numba

. B oo
CURAND .* e

CUDA Math

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 17174 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

13

Libraries
Programming GPUs is easy:

Use applications & libraries

CUSPARSE G u
CuBLAS OpenCV
cuDNN
{4} ArRAYFIRE
Numba
CuFFT .
L g oo
CuRAND '
CUDA Math
. .
‘ JULICH JOLICH
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 17174 Forschungszentrum CENTRE

13

CuBLAS

Parallel algebra

= GPU-parallel BLAS (all 152 routines)

= Single, double, complex data types

= Constant competition with Intel’s MKL
= Multi-GPU support

— https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas

Member of the Helmholtz Association 20 January 2023 Slide 18174

ﬁ

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas

CuBLAS

Code example

int a = 42; dint n = 10;
float x[n], y[nl;
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float = d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]1));
cudaMallocManaged(&d_y, n * sizeof(y[0]));
cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, vy, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Member of the Helmholtz Association 20 January 2023 Slide 19174

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CuBLAS

Code example

int a = 42; int n = 10;
float x[nl, y[nl;

// fill x, y

cublasHandle_t handle; o
cublasCreate(&handle);
float = d_x, * d_y;

cudaMallocManaged(&6d_x, n * sizeof(x[0]));e— Allocate GPU memory

cudaMallocManaged(&d_y, n * sizeof(y[0]));

cublasSaxpy(n, a, d_x, 1, d_y, 1);e— Call BLAS routine

cublasGetVector(n, sizeof(y[0]), d_y, 1, vy, 1); Copy result to host
cudaFree(d_x); cudaFree(d_y);

cublasDestroy(handle);eo——

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 20174

Programming GPUs
Directives

GPU Programming with Directives

Keepin’ you portable
= Annotate serial source code by directives

#pragma acc loop
for (int i = 0; i < 1; i++) {};

Member of the Helmholtz Association 20 January 2023 Slide 22174

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

GPU Programming with Directives

Keepin’ you portable

= Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i++) {};

= OpenACC: Especially for GPUs; OpenMP: Has GPU support
= Compiler interprets directives, creates according instructions

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 22174 J

Forschungszentrum

GPU Programming with Directives

Keepin’ you portable

= Annotate serial source code by directives

#pragma acc loop
for (int i = 0; i < 1; i++) {};

= OpenACC: Especially for GPUs; OpenMP: Has GPU support
= Compiler interprets directives, creates according instructions

Pro Con
= Portability = Only few compilers
= Other compiler? No problem! To it, it’s a = Not all the raw power available
serial program = Alittle harder to debug
= Different target architectures from same

code
= Easy to program

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 22174 J

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

OpenACC/ OpenMP

Code example

void saxpy_acc(int n, float a, float * x, float * y) {

#pragma acc kernels
for (int i = 0; 1 < n; i++)
y[il = a » x[i] + y[i];
}

float a = 42;

int n = 10;

float x[n], y[nl;
// fill x, y

saxpy_acc(n, a, X, y);

Member of the Helmholtz Association 20 January 2023

Slide 23174

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

OpenACC/ OpenMP

Code example

void saxpy_acc(int n, float a, float * x, float * y) {

#pragma omp target map(to:x[0:n]) map(tofrom:y[0:n]) loop

for (int i = 0; 1 < n; i++)
y[i] = a = x[i] + y[il;
}

float a = 42;

int n = 10;

float x[nl, yI[nl;
// fill x, y

saxpy_acc(n, a, x, y);

Member of the Helmholtz Association 20 January 2023

Slide 23174

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Programming GPUs Directly

Finally...

@) JULICH| &5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 24|74 Furschungszentrum CENTRE

Programming GPUs Directly

Finally...

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, ...)
= Platform: Programming language (OpenCL C/C++), API, and compiler
= Targets CPUs, GPUs, FPGAs, and other many-core machines
= Fully open source

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 24174 J Forschungszentrum

Programming GPUs Directly

Finally...

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, ...)
= Platform: Programming language (OpenCL C/C++), API, and compiler
= Targets CPUs, GPUs, FPGAs, and other many-core machines
= Fully open source
CUDA NVIDIA’s GPU platform
= Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, ...
Only NVIDIA GPUs
= Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran; and more in NVIDIA HPC SDK

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 24174

Programming GPUs Directly

Finally...

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, ...)

= Platform: Programming language (OpenCL C/C++), API, and compiler
= Targets CPUs, GPUs, FPGAs, and other many-core machines
= Fully open source

CUDA NVIDIA’s GPU platform
= Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, ...
= Only NVIDIA GPUs
= Compilation with nvcc (free, but not open)

clang has CUDA support, but CUDA needed for last step
= Also: CUDA Fortran; and more in NVIDIA HPC SDK
HIP AMD’s unified programming model for AMD (via ROCm) and NVIDIA GPUs
SYCL Intel’s unified programming model for CPUs and GPUs (also: DPC++)

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 24174

Programming GPUs Directly

Finally...

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, ...)

= Platform: Programming language (OpenCL C/C++), API, and compiler
= Targets CPUs, GPUs, FPGAs, and other many-core machines
= Fully open source

CUDA NVIDIA’s GPU platform
= Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, ...
= Only NVIDIA GPUs
= Compilation with nvcc (free, but not open)

clang has CUDA support, but CUDA needed for last step
= Also: CUDA Fortran; and more in NVIDIA HPC SDK
HIP AMD’s unified programming model for AMD (via ROCm) and NVIDIA GPUs
SYCL Intel’s unified programming model for CPUs and GPUs (also: DPC++)

= Choose what flavor you like, what colleagues/collaboration is using
= Hardest: Come up with parallelized algorithm

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 24174

Programming GPUs Directly

Finally...

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, ...)

= Platform: Programming language (OpenCL C/C++), API, and compiler
= Targets CPUs, GPUs, FPGAs, and other many-core machines
= Fully open source

CUDA NVIDIA’s GPU platform
= Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, ...
= Only NVIDIA GPUs
= Compilation with nvcc (free, but not open)

clang has CUDA support, but CUDA needed for last step
= Also: CUDA Fortran; and more in NVIDIA HPC SDK
HIP AMD’s unified programming model for AMD (via ROCm) and NVIDIA GPUs
SYCL Intel’s unified programming model for CPUs and GPUs (also: DPC++)

= Choose what flavor you like, what colleagues/collaboration is using
= Hardest: Come up with parallelized algorithm

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 24174 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Programming GPUs
CUDA C/C++

CUDA SAXPY

With runtime-managed data transfers

__global__ void saxpy_cuda(int n, float a, float * x, float » y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a = x[i] + y[i];
}

int a = 42;

int n = 10;

float x[n], yInl;

// fill x, y

cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n = sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, X, y);

cudaDeviceSynchronize();

g JULICH

Member of the Helmholtz Association 20 January 2023 Slide 26174 Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 27174 Forschungszentrum CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks
= Methods to exploit parallelism:

= Thread
PNV IV

Member of the Helmholtz Association 20 January 2023

Slide 27174

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks
= Methods to exploit parallelism:

= Threads
S

Member of the Helmholtz Association 20 January 2023

Slide 27174

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

= Threads —|Block|

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 27174 Furschungszentrum CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

= Threads —|Block|
- [Block|

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 27174 Furschungszentrum CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

= Threads —|Block |
- [Blocks |
© © @

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 27174 Forschungszentvum CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

= Threads —|Block |

Member of the Helmholtz Association 20 January 2023

@) JULICH
Slide 27174 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

= Threads —|Block |

= Threads & blocksin 3D

Member of the Helmholtz Association 20 January 2023

Slide 27174

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

- m* i i
« [Blodks] -+ &1 | i
A ORENCY :

= Threads & blocksin 3D

= Parallel function: kernel

= __global__ kernel(int a, float * b) { }

= Access own ID by global variables threadIdx.x, blockIdx.y,...
= Execution entity: threads

s Lightweight — fast switchting!

= 1000s threads execute simultaneously — order non-deterministic!

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 27174 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Kernel Functions

= Kernel: Parallel GPU function
= Executed by each thread
= |n parallel
= Called from host or device

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 28174 Forschungszentrum CENTRE

Kernel Functions

= Kernel: Parallel GPU function

= Executed by each thread
= |n parallel
= Called from host or device

= All threads execute same code; but can take different paths in program flow (some
penalty)

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 28174 J Forschungszentrum

Kernel Functions

= Kernel: Parallel GPU function
= Executed by each thread
= |n parallel
= Called from host or device

= All threads execute same code; but can take different paths in program flow (some
penalty)

= Info about thread: local, global IDs

int currentThreadId = threadIdx.x;
float x = input[currentThreadId];
output[currentThreadId] = x=*x;

JULICH
SUPERCOMPUTING
CENTRE

Member of the Helmholtz Association

@) JULICH
20 January 2023 Slide 28174 J

Forschungszentrum

Kernel Conversion

Recipe for C Function — CUDA Kernel

void scale(float scale, float * in, float * out, int N) {

for (int 1
out[i]

Member of the Helmholtz Association

0; 1 < N; i++)
scale = in[i];

20 January 2023

Slide 29174

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Kernel Conversion

Recipe for C Function — CUDA Kernel

void scale(float scale, float * in, float * out, int N) {

for (
int i = 0;
i< N;
1++
)
out[i] = scale * in[i];
}
‘ JULICH JULICH
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 29174 J Forschungszentrum | CENTRE

Kernel Conversion

Recipe for C Function — CUDA Kernel

void scale(float scale, float * in, float * out, int N) {

int 1 = 0
for (;
i< N;
1++
)
out[i] = scale * in[i];
}
‘ JULICH JULICH
‘ SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 29174 Forschungszentrum | CENTRE

Kernel Conversion

Recipe for C Function — CUDA Kernel

void scale(float scale, float * in, float * out, int N) {

int i =0
for (;
'
1++
)
if (i < N)
out[i] = scale = in[i];
}
g JULICH | &% ouume
Member of the Helmholtz Association 20 January 2023 Slide 29174 Forschungszentrum CENTRE

Kernel Conversion

Recipe for C Function — CUDA Kernel

void scale(float scale, float * in, float * out, int N) {

int i =0
if (i < N)
out[i] = scale = in[i];
}
g JULICH | &% ouume
Member of the Helmholtz Association 20 January 2023 Slide 29174 Forschungszentrum CENTRE

Kernel Conversion

Recipe for C Function — CUDA Kernel

__global__ void scale(float scale, float * in, float * out, int N) {

int i =0
if (i < N)
out[i] = scale = in[i];
}
g JULICH | &% ouume
Member of the Helmholtz Association 20 January 2023 Slide 29174 Forschungszentrum CENTRE

Kernel Conversion

Recipe for C Function — CUDA Kernel

Identify Loops J Extract Index j Extract Termination Condition Add global
Replace i by threadIdx.x

__global__ void scale(float scale, float * in, float * out, int N) {
int i = threadIdx.x;

if (1 < N)
out[i] = scale = in[il;

JULICH
SUPERCOMPUTING
CENTRE

IJ JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 29174

Kernel Conversion
Recipe for C Function — CUDA Kernel

Identify Loops Extract Termination Condition Add global
Replace 1 by threadIdx.xJ...including block configuration

__global__ void scale(float scale, float * in, float * out, int N) {
int i = threadIdx.x + blockIdx.x * blockDim.x;

if (1 < N)
out[i] = scale = in[il;

JULICH
SUPERCOMPUTING
CENTRE

IJ JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 29174

Kernel Conversion

Summary

= C function with explicit loop
void scale(float scale, float * in, float * out, int N) {
for (int 1 = 0; 1 < N; i++)
out[i] = scale = in[i];

}

= CUDA kernel with implicit loop
__global__ void scale(float scale, float * in, float * out, int N) {
int i = threadIdx.x + blockIdx.x * blockDim.x;
if (1 < N)
out[i] = scale = in[i];

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 30174

Kernel Launch
kernel<<<int gridDim, int blockDim>>>(...)
= Parallel threads of kernel launched with triple-chevron syntax

= Total number of threads, divided into

= Number of blocks on the grid (gridDim)
= Number of threads per block (blockDim)

Member of the Helmholtz Association 20 January 2023 Slide 31174

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Kernel Launch
kernel<<<int gridDim, int blockDim>>>(...)
= Parallel threads of kernel launched with triple-chevron syntax

= Total number of threads, divided into

Q = Number of blocks on the grid (gridDim)
= Number of threads per block (blockDim)

Member of the Helmholtz Association 20 January 2023 Slide 31174

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Kernel Launch
kernel<<<int gridDim, int blockDim>>>(...)

= Parallel threads of kernel launched with triple-chevron syntax
= Total number of threads, divided into
Q = Number of blocks on the grid (gridDim)
= Number of threads per block (blockDim)

m Call returns immediately; kernel launch is asynchronous!

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 31174 J Forschungszentrum

Kernel Launch

kernel<<<int gridDim, int blockDim>>>(...)

Parallel threads of kernel launched with triple-chevron syntax
Total number of threads, divided into

Q = Number of blocks on the grid (gridDim)
= Number of threads per block (blockDim)

Call returns immediately; kernel launch is asynchronous!

Example:

int nThreads = 32;
scale<<<N/nThreads, nThreads>>>(23, in, out, N)

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 31174 J Forschungszentrum

Kernel Launch

kernel<<<int gridDim, int blockDim>>>(...)

Parallel threads of kernel launched with triple-chevron syntax
Total number of threads, divided into

Q = Number of blocks on the grid (gridDim)
= Number of threads per block (blockDim)

Call returns immediately; kernel launch is asynchronous!

Example:

int nThreads = 32;
scale<<<N/nThreads, nThreads>>>(23, in, out, N)

Possibility for too many threads; include termination condition into kernel!

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 31174 J Forschungszentrum

Full Kernel Launch

For Reference

kernel<<<dim3 gD, dim3 bD, size_t shared, cudaStream_t stream>>>(...)

= 2 additional, optional parameters

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 32174

Full Kernel Launch

For Reference

kernel<<<dim3 gD, dim3 bD, size_t shared, cudaStream_t stream>>>(...)

= 2 additional, optional parameters

shared Dynamic shared memory
= Small GPU memory space; share data in block (high bandwidth)
= Shared memory: allocate statically (compile time) or dynamically (run time)
= size_t shared: bytes of shared memory allocated per block (in addition to

static shared memory)

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 32174

Full Kernel Launch

For Reference

kernel<<<dim3 gD, dim3 bD, size_t shared, cudaStream_t stream>>>(...)

= 2 additional, optional parameters

shared Dynamic shared memory
= Small GPU memory space; share data in block (high bandwidth)
= Shared memory: allocate statically (compile time) or dynamically (run time)
= size_t shared: bytes of shared memory allocated per block (in addition to
static shared memory)
stream Associated CUDA stream
= CUDA streams enable different channels of communication with GPU
= Can overlap in some cases (communication, computation)
m cudaStream_t stream: ID of stream to use for this kernel launch

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 32174 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Grid Dimensions Y

= Threads & blocks in 3D’

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 33|74 Forschungszentvum CENTRE

Grid Dimensions Y

» Threads & blocksin 3D’
= Create 3D configurations with struct dim3 L STl T TT L |

dim3 blockOrGridDim(size_t dimX, size_t dimY, size_t dimZz)

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 33174 J Forschungszentrum

Grid Dimensions Y

» Threads & blocksin 3D’
= Create 3D configurations with struct dim3 L STl T TT L |

dim3 blockOrGridDim(size_t dimX, size_t dimY, size_t dimZz)

= Example:

dim3 blockDim(32, 32);
dim3 gridbim = {1000, 100};

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 33174 J Forschungszentrum

Grid Dimensions Y

» Threads & blocksin 3D’
= Create 3D configurations with struct dim3 L STl T TT L |

dim3 blockOrGridDim(size_t dimX, size_t dimY, size_t dimz)

= Example:

dim3 blockDim(32, 32);

dim3 gridbdim = {1000, 100};
= Kernel call with dim3

kernel<<<dim3 gridDim, dim3 blockDim>>>(...)

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 33174 J Forschungszentrum

Grid Sizes

= Block and grid sizes are hardware-dependent

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 34|74 Forschungszentrum CENTRE

Grid Sizes

= Block and grid sizes are hardware-dependent

= For JSC GPUs: Tesla V100, A100
Block = Nrhread < (1024y,1024y,64,)
u ‘NThread| = Nthread < 1024

Member of the Helmholtz Association 20 January 2023 Slide 34174

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Grid Sizes

= Block and grid sizes are hardware-dependent

= For JSC GPUs: Tesla V100, A100
Block = Nrhread < (1024y,1024y,64,)
u ‘NThread| = Nthread < 1024
Grid = Npjocks < (2147483647, 65535, 65535,) = (231,2%6,216) — 1

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 34174 J Forschungszentrum

Grid Sizes

= Block and grid sizes are hardware-dependent

= For JSC GPUs: Tesla V100, A100
Block = Nrhread < (1024y,1024y,64,)
u ‘NThread| = Nthread < 1024
Grid = Npjocks < (2147483647, 65535, 65535,) = (231,2%6,216) — 1

= Find out yourself: deviceQuery example from CUDA Samples

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 34174 J Forschungszentrum

Grid Sizes

= Block and grid sizes are hardware-dependent

= For JSC GPUs: Tesla V100, A100
Block = Nrhread < (1024y,1024y,64,)
u ‘NThread| = Nthread < 1024
Grid = Npjocks < (2147483647,,65535,,65535,) = (23,216,216) — 1

= Find out yourself: deviceQuery example from CUDA Samples

= Workflow: Chose 128 or 256 as block dim; calculate grid dim from problem size
int Nx = 1000, Ny = 1000;
dim3 blockDim(16, 16);
int gx = (Nx % blockDim.x == 0) Nx / blockDim.x : Nx / blockDim.x + 1;
int gy = (Ny % blockDim.y == 0) Ny / blockDim.y : Ny / blockDim.y + 1;
dim3 gridbim(gx, gy);
kernel<<<gridDim, blockDim>>>();

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 34174 J Forschungszentrum

JULICH

CENTRE

SUPERCOMPUTING

Hardware Threads

Mapping Software Threads to Hardware

Thread Thread Block Grid
3 > A,
<SS i :
S 5 :
> g Ak
CUDA Core Multiprocessor (SM) GPU Device
] i -
] fiii mms oio
g) JULICH | i
Member of the Helmholtz Association 20 January 2023 Slide 35174 ForschUngszen"u"‘ CENTRE

Memory Management
With Automated Transfers

= Allocate memory to be used on GPU or CPU

cudaMallocManaged(T** ptr, size_t nBytes)

= Datais copied to GPU or to CPU automatically

Member of the Helmholtz Association 20 January 2023 Slide 36174

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Memory Management
With Automated Transfers

= Allocate memory to be used on GPU or CPU

cudaMallocManaged(T** ptr, size_t nBytes)

= Datais copied to GPU or to CPU automatically

= Example:

float * a;
int N = 2048;
cudaMallocManaged(&a, N * sizeof(float));

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 36174

Memory Management
With Automated Transfers

= Allocate memory to be used on GPU or CPU

cudaMallocManaged(T** ptr, size_t nBytes)

= Datais copied to GPU or to CPU automatically

= Example:
float * a;
int N = 2048;
cudaMallocManaged(&a, N * sizeof(float));

= Free device memory

cudaFree(void* ptr)

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 36174

Memory Management

With Manual Transfers

= Allocate memory to be used on GPU

| cudaMalloc(T=** ptr, size_t nBytes)

Member of the Helmholtz Association 20 January 2023 Slide 37174

Memory Management

With Manual Transfers

= Allocate memory to be used on GPU

| cudaMalloc(T=** ptr, size_t nBytes)

= Copy data between host <+ device

| cudaMemcpy(void* dst, void* src, size_t nByte, enum cudaMemcpyKind dir)

Member of the Helmholtz Association 20 January 2023 Slide 37174

Memory Management

With Manual Transfers

= Allocate memory to be used on GPU

| cudaMalloc(T=** ptr, size_t nBytes)

= Copy data between host <+ device

| cudaMemcpy(void* dst, void* src, size_t nByte, enum cudaMemcpyKind dir)

= Example:
float * a, * a_d;
int N = 2048;
// fill a
cudaMalloc(§a_d, N * sizeof(float));
cudaMemcpy(a_d, a, N = sizeof(float), cudaMemcpyHostToDevice);
kernel<<<1,1>>>(a_d, N);
cudaMemcpy(a , a_d, N = sizeof(float), cudaMemcpyDeviceToHost);

Member of the Helmholtz Association 20 January 2023 Slide 37174

Unified Memory

Overview

Everything started with manual data management

First Unified Memory since CUDA 6.0

Better Unified Memory better since CUDA 8.0

Now: Unified Memory great default, explicit memory only a possible optimization

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 38174 J Forschungszentrum

Manual Memory vs. Unified Memory

void sortfile(FILE =fp, int N) { void sortfile(FILE =fp, int N) {
char xdata; char xdata;
char xdata_d;

data = (char *)malloc(N); cudaMallocManaged(&data, N);
cudaMalloc(&data_d, N);

fread(data, 1, N, fp); fread(data, 1, N, fp);

cudaMemcpy(data_d, data, N, cudaMemcpyHostToDevice);

kernel<<<...>>>(data, N); kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

cudaMemcpy(data, data_d, N, cudaMemcpyDeviceToHost);

host_func(data) host_func(data);
cudaFree(data_d); free(data); cudaFree(data);
} }
. i
‘ JULICH JULICH
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 39174 Forschungszentrum | CENTRE

Implementation Details
Under the hood

cudaMallocManaged(&ptr, ...);
*ptr = 1;

kernel<<<...>>>(ptr);

Member of the Helmholtz Association 20 January 2023

Slide 40174

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Implementation Details
Under the hood

cudaMallocManaged(&ptr, ...); <—eEmpty! No pages anywhere yet (like malloc())
*ptr = 1;

kernel<<<...>>>(ptr);

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 40|74 Forschungszentrum CENTRE

Implementation Details
Under the hood

cudaMallocManaged(&ptr, ...); <—eEmpty! No pages anywhere yet (like malloc())

*ptr = 1;4 o CPU page fault: data allocates on CPU

kernel<<<...>>>(ptr);

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 40174

Implementation Details
Under the hood

cudaMallocManaged(&ptr, ...); <—eEmpty! No pages anywhere yet (like malloc())

*ptr = 1;4 o CPU page fault: data allocates on CPU

kernel<<<...>>>(ptr); 4—————o GPU page fault: data migrates to GPU

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 40174

Implementation Details

Under the hood

cudaMallocManaged(&ptr, ...); Empty! No pages anywhere yet (like malloc())
*ptr = 1; CPU page fault: data allocates on CPU
kernel<<<...>>>(ptr); GPU page fault: data migrates to GPU

Pages populate on first touch

Pages migrate on-demand

GPU memory over-subscription possible

Concurrent access from CPU and GPU to memory (page-level)

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 40174 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Performance Analysis

Comparing scale_vector_um (Unified Memory) and scale_vector (manual copy) for
20480 float elements.

Time(%) Total Time (ns) Name

100.0 463,286 scale(float, floatx, floatx, int)

Time(%) Total Time (ns) Name

100.0 4,792 scale(float, float*, float*, int)
. .
‘ J U L I c H JULICH
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 41174 Forschungszentrum | CENTRE

Performance Analysis

Comparing scale_vector_um (Unified Memory) and scale_vector (manual copy) for
20480 float elements.

Time(%) Total Time (ns) Name

100.0 463,286 scale(float, floatx, floatx, int)

100 x slower?!

What’s going wrong here?

Time(%) Total Time (ns)

100.0 4,792 scale(float, float*, float*, int)
. .
‘ J U L I c H JULICH
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 41174 Forschungszentrum | CENTRE

Performance Analysis

Comparing scale_vector_um (Unified Memory) and scale_vector (manual copy) for
20480 float elements.

~ CUDAHW (Tesla V100-PCIE-16(| '-.

r
~ 93.3% Context 1
1]

~ 6.7% Unified memory
~ 100.0% Memory
41.1% HtoD transfer

58.9% DtoH transfer

Time(%) Total Time (ns) Name

100.0 4,792 scale(float, float*, float*, int)
. .
‘ J U L I c H JULICH
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 41174 Forschungszentrum | CENTRE

Performance Analysis

Comparing scale_vector_um (Unified Memory) and scale_vector (manual copy) for
20480 float elements.

~ CUDAHW (Tesla V100-PCIE-16([}

~ 93.3% Context 1
= 6.7% Unified memory
~ 100.0% Memory l I I I
411% HtoD transfer 1 1]
58.9% DtoH transfer |l 1

~ CUDAHW (Tesla V100-PCIE-16(¢)
~ 9.6% Kernels
» 100.0% scale
Y — ‘ .
56.5% HtoD memcpy
43.5% DtoH memcpy [Memcpy DtoH .|

@) JULICH| &5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 41174 Forschm\gszent,u"‘ CENTRE

Comparing UM and Explicit Transfers

UM Kernelis launched, data is needed by kernel, data migrates host—device
= Run time of kernel incorporates time for data transfers

Explicit Data will be needed by kernel - data migrates host—device before kernel launch
=- Run time of kernel without any transfers

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 42174

Comparing UM and Explicit Transfers

UM Kernelis launched, data is needed by kernel, data migrates host—device
= Run time of kernel incorporates time for data transfers

Explicit Data will be needed by kernel - data migrates host—device before kernel launch
=- Run time of kernel without any transfers

= UM more convenient
= Total run time of whole program does not principally change

= But data transfers sometimes sorted to kernel launch

9 JULICH | &

Forschungszentrum CENTRE

Member of the Helmholtz Association 20 January 2023 Slide 42174

SUPERCOMPUTING

Comparing UM and Explicit Transfers

UM Kernelis launched, data is needed by kernel, data migrates host—device
= Run time of kernel incorporates time for data transfers

Explicit Data will be needed by kernel - data migrates host—device before kernel launch
=- Run time of kernel without any transfers

= UM more convenient
= Total run time of whole program does not principally change

= But data transfers sometimes sorted to kernel launch
= Improve UM behavior with performance hints!

JULICH

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 42174 J Forschungszentrum

CENTRE

SUPERCOMPUTING

Performance Hints for UM

New API routines

API calls to augment data location knowledge of runtime

= cudaMemPrefetchAsync(data, length, device, stream)
Prefetches datato device (on stream) asynchronously

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 43174 J Forschungszentrum

Performance Hints for UM

New API routines

API calls to augment data location knowledge of runtime

= cudaMemPrefetchAsync(data, length, device, stream)
Prefetches datato device (on stream) asynchronously

= cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 43174 J Forschungszentrum

Performance Hints for UM

New API routines

API calls to augment data location knowledge of runtime

= cudaMemPrefetchAsync(data, length, device, stream)
Prefetches datato device (on stream) asynchronously
= cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:
= cudaMemAdviseSetReadMostly: Read-only copy is kept

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 43174 J Forschungszentrum

Performance Hints for UM

New API routines

API calls to augment data location knowledge of runtime

= cudaMemPrefetchAsync(data, length, device, stream)
Prefetches datato device (on stream) asynchronously

= cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:

= cudaMemAdviseSetReadMostly: Read-only copy is kept
= cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first
access will establish mapping

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 43174 J Forschungszentrum

Performance Hints for UM

New API routines

API calls to augment data location knowledge of runtime

= cudaMemPrefetchAsync(data, length, device, stream)
Prefetches datato device (on stream) asynchronously

= cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:
= cudaMemAdviseSetReadMostly: Read-only copy is kept
= cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first
access will establish mapping
= cudaMemAdviseSetAccessedBy: Data is accessed by this device; will pre-map data to
avoid page fault

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 43174 J Forschungszentrum

Performance Hints for UM

New API routines

API calls to augment data location knowledge of runtime

= cudaMemPrefetchAsync(data, length, device, stream)
Prefetches datato device (on stream) asynchronously

= cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:
= cudaMemAdviseSetReadMostly: Read-only copy is kept
= cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first
access will establish mapping
= cudaMemAdviseSetAccessedBy: Data is accessed by this device; will pre-map data to
avoid page fault

= Use cudaCpuDeviceId fordevice CPU,oruse cudaGetDevice() as usual to retrieve
current GPU device id (default: 0)

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 43174 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Hints in Code

void sortfile(FILE =fp, int N) {
char *data;
// ...
cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

cudaMemPrefetchAsync(data, N, device);
kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

host_func(data);
cudaFree(data); }

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 44174

Hints in Code

void sortfile(FILE =fp, int N) {
char *data;

/).
cudaMallocManaged(&data, N);

fread(data, 1, N, fp);
cudaMemPrefetchAsync(data, N, device);

kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

Prefetch data to avoid ex-

host_func(data); pensive GPU page faults
cudaFree(data); }

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 44174

Hints in Code

void sortfile(FILE *fp, int N) { Bead«nﬂycopyofda?
is created on GPU during

char *data;
7/ prefetch

cudaMallocManaged(&data, N); ;thI;l:ltand GPU reads will

fread(data, 1, N, fp);

cudaMemAdvise(data, N, cudaMemAdviseSetReadMostly, device);
cudaMemPrefetchAsync(data, N, device);
kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

Prefetch data to avoid ex-
host_func(data); pensive GPU page faults
cudaFree(data); }

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 44174

Programming GPUs
Performance Analysis

GPU Tools

The helpful helpers helping helpless (and others)

= NVIDIA
cuda-gdb GDB-like command line utility for debugging
compute-sanitizer Check memory accesses, race conditions, ...
Nsight IDE for GPU developing, based on Eclipse (Linux, OS X) or Visual Studio
(Windows) or VScode
Nsight Systems GPU program profiler with timeline
Nsight Compute GPU kernel profiler

= AMD

rocProf Profiler for AMD’s ROCm stack
uProf Analyzer for AMD’s CPUs and GPUs

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 46174 J Forschungszentrum

Nsight Systems

CLI

$ nsys profile --stats=true ./poisson2d 10 # (shortened)

CUDA API Statistics:

Time(%) Total Time (ns) Num Calls

160,407,572 0
CUDA Kernel Statistics:

Time(%) Total Time (ns

158,686,617
25,120

Member of the Helmholtz Association

Minimum Maximum

25,648,117

Maximum

14,525,819 25,652,783 main_106_gpu

2,304 3,680 main_106_gpu__red

Slide 47174

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Nsight Systems

GUI

NVIDIA Nsight Systems 2020.4.1

View Tools Help

Timeline View

~ 98.5% Memory

Sow == @ 1eror, 4 wamings, 16 messages
<[s 198 208 2 226 23 21 =
» CPU (256)
» Threads (6)
~ CUDAHW (Tesla
~ 15% Kemels

» 796% main_106_gpu
» 19.0% main_118_gpu
3kernel groups hidder ==

<01% Memset

511% HtoD memcpy

J; 1l Liad, J I Ll ke sl ok okt b o] J J il !
48.9% DioH memepy e T —
<] D
EventsView ~ |
Name ~[4]

Name ~ Start Duration GPU Context. 1~
7 Memset 1795165 1,760 us GPUO Stream 14
8 main_106_gpu 1795175 472,923us | GPUO Stream 14
9 main_106_gpu_red 1795218 3488 ps GPUO Stream 14
10 Memcpy DtoH 17,9522 2,080 ps GPU O Stream 14
n Memcpy DtoH 1795225 1,760 us GPUO Stream14 |

Member of the Helmholtz Association

20 January 2023

Slide 48174

Nsight Compute

GUI

|Details ~ | Launch: |- mc_polymer_iteration_352_gpu ~ || ¥ |-/ | Add saseline |=| | Apply Rules |
rrent 1194.. Time: 2682 msecond Cycles: 28191.300 Regs: 144 GPU: A100-SXM4-40GB SM Frequency: 1.08 cycle/nsecond CC: 80 Process: [31938] SOMA @ @ o
100 126.. 7747 msecond Cycles: 101123609 Regs: 144 GPU: Tesla VI00-SXM2-16GB SM Frequency: 131 cycle/nsecond CC: 70 Process: [30412] SOMA
PU Speed Of nghk A I N=
-level overview of for mory f the GPU. For each unit, the Speed Of Light (SOL) reports me achieved percentage of utilization with respect to the
retical maximum. H\gh level overview of the unhza non for compute and memory resources of the GPU presented as a roofline char
SM [%] 20.51 (+1 Duration [msecond] 25.82 (=66.54%)
Memory [%] 55.82 Elapsed Cycles [cycle] 28191300 (-72.12%)
L1/TEX Cache [%] 40.19 SM Active Cycles [cycle] 27784365.64 (-72.30%)
L2 cache [%] 61.89 (+149.01%) | SM Frequency [cycle/nsecond] 1.09 (-16.67%)
DRAM [5] 31,52 (-42.82%) |DRAM Frequency [cycle/nsecond] 1.21 (+38.21%)

GPU Utilization

SM[%) F
00 100 200 300 400 500 800 70,0 800 200 100
Speed Of Light [%]
SOL SM Breakdown SOL Memory Breakdown
SOL SM: Issue Active [%] 2051 (+160.09%) | | SOLL2: Xbar2lts Cycles Active [%] 5582 (+124.58%)
SOL SM: Inst Executed (%) 2046 (+160.10%) | | SOLL2: T Tag Requests [%] 4527 (+178.82%)
SOL SM: Pipe Shared Cycles Active [%] 18.36 (+165.69%)| | SOL Li: M Litex2xbar Req Cycles Active [%] 3961 (+107.93%)
SOL SM: Pipe Fp64 Cycles Active [%] 18.36 (+16569%) SOLL2: T Sectors [%] 3880 (+7123%)
SOL SM: Inst Executed Pipe Lsu %] 1080 (+127.96%) | SOL L Data Pipe Lsu Wavefronts [%] 3410 (+76.03%)
SOL SM: Pipe Alu Cycles Active [%] 1037 (+161.23%) | SOL GPU: Dram Throughput [%] 3162 (-4282%)
SOL SM: Inst Executed Pipe Cbu Pred On Any [%] 813 (+71.98%)| |SOLL1: Lsu Writeback Active [%] 2483 (+6367%)
SOL SM: Mio2rf Writeback Active (%] 810 (+161.91%) | | SOLL2: D Sectors [%] 22,64 (+116.71%)
SOL SM: Mio P Read Cycles Active [%] 810 (+105.96%) | | SOL L2: D Sectors Fill Device [%] 1279 (-12.20%)
SOL SM: Mio Pq Write Cycles Active [%] 753 (+166.64%) | | SOL L1 Lsuin Requests [%] 1080 (+127.96%)
SOL SM: Pipe Fma Cycles Active [%] 722 (+16580%) | SOLL2: Lts2xbar Cycles Active [%] 882 (-21.48%)
SOL SM: Mio Inst Issued [%] 655 (+12369%)| | SOLL1: M Xbar2litex Read Sectors %] 6.39 (-2558%)
SOL SM: Inst Executed Pipe Xu [%] 459 (+16569%) | SOL L1: Data Bank Reads [%] 309 (+77:11%)
SOL $M: Inst Executed Pipe Uniform [%] 120 |SOLL1: Data Bank Writes [%] 195 (+23.96%)
SOL SM: Inst Executed Pipe Adu [%] 118 (+16553%) | | SOLL1: Texin Sm2tex Req Cycles Active [%] 000 (+258.69%)
SOL IDC: Request Cycles Active [%] 059 (+165.37%) | | SOL Li: F Wavefronts [%] 000 (+258.69%)
SOL SM: Inst Executed Pipe Tex [%] 0 (+000%)| SOLL2: D SectorsFill Sysmem (%] 000 (+inf%)

SOL SM: Inst Executed Pipe Ipa [%] 0 (#000%)| SOLL1: Data Pipe Tex Wavefronts [%] 0 (+0.00%)

Programming GPUs
Beyond CUDA

Programming GPUs
Beyond CUDA: Cooperative Groups

New Model: Cooperative Groups

= Motivation to extend classical model
Algorithmic Not all algorithms map easily to available synchronization methods;
synchronization should be more flexible
Design Make groups of threads explicit entities
Hardware Access new hardware features (Independent Thread Scheduling, Thread
Block Clusters)

— Cooperative Groups (CG)
A flexible model for synchronization and communication within groups of threads.

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 52174 J Forschungszentrum

New Model: Cooperative Groups

= Motivation to extend classical model
Algorithmic Not all algorithms map easily to available synchronization methods;
synchronization should be more flexible
Design Make groups of threads explicit entities
Hardware Access new hardware features (Independent Thread Scheduling, Thread
Block Clusters)

— Cooperative Groups (CG)
A flexible model for synchronization and communication within groups of threads.
= Allin namespace cooperative_groups (cooperative_groups.h header)

= Followingin text: cooperative_groups::func() — cg: : func()
namespace cg = cooperative_groups;

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 52174 J Forschungszentrum

JULICH

CENTRE

SUPERCOMPUTING

Thread Group Landscape

@) JULICH| &5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 53|74 Forschungszentrum CENTRE

Thread Group Landscape

Thread Block

@) JULICH| &5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 53|74 Forschungszentrum CENTRE

Thread Group Landscape

Thread Block

@) JULICH| &5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 53|74 Forschungszentrum CENTRE

Thread Group Landscape

Thread Block

@) JULICH| &5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 53174 Forschungszentrum CENTRE

Thread Group Landscape

Thread Block Cluster

Thread Group

Thread Block
Tile

Coalesced Group

Thread Block

Member of the Helmholtz Association 20 January 2023 Slide 53174

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Common Methods of Cooperative Groups

= Fundamental type: thread_group
= Every CG has following member functions
sync() Synchronize the threads of this group (alternative cg: : sync(g))
Before: __syncthreads() for whole block
thread_rank() Getunique ID of current thread in this group (local index)

Before: . x forindex in block
size() Number of threads in this group
Before: . x for number of threads in block
is_valid()

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 54174 J Forschungszentrum

Simple Example: Print Rank

__device__ void printRank(cg::thread_group g) {
printf("Rank %d\n", g.thread_rank());

}

__global__ void allPrint() {
cg::thread_block b = cg::this_thread_block();

printRank(b);

}

int main() {
allPrint<<<1, 23>>();

}

Member of the Helmholtz Association 20 January 2023 Slide 55174

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Advanced Example: Cooperative Reduce Collective

__shared__ int reduction_s[BLOCKSIZE];
cg::thread_block cta = cg::this_thread_block();
cg::thread_block_tile<32> tile = cg::tiled_partition<32>(cta);

const int tid = cta.thread_rank();

int value = A[tid];

reduction_s[tid] = cg::reduce(tile, value, cg::plus<int>());

// reduction_s contains tile-sum at all positions associated to tile
cg::sync(cta);

// Still to do: sum partial tile sums

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 56174

Programming GPUs
Beyond CUDA: MPI

Distributed Computing with MPI

= Modern compute nodes: multiple GPUs per node

Member of the Helmholtz Association 20 January 2023 Slide 58174

Distributed Computing with MPI

= Modern compute nodes: multiple GPUs per node

Member of the Helmholtz Association 20 January 2023 Slide 58174

Distributed Computing with MPI

= Modern compute nodes: multiple GPUs per node

= HPC: multiple nodes

Member of the Helmholtz Association 20 January 2023 Slide 58174

Distributed Computing with MPI

= Modern compute nodes: multiple GPUs per node

= HPC: multiple nodes

Member of the Helmholtz Association 20 January 2023 Slide 58174

Distributed Computing with MPI

Modern compute nodes: multiple GPUs per node

HPC: multiple nodes
Technology for distribution: | /-
MPI also for multi-GPU computing!

Member of the Helmholtz Association 20 January 2023 Slide 58174

Distributed Computing with MPI

Modern compute nodes: multiple GPUs per node

HPC: multiple nodes
Technology for distribution: | /-
MPI also for multi-GPU computing!

Important: Direct GPU-to-GPU memory transfers,
no intermediate transfer to CPU

Member of the Helmholtz Association 20 January 2023 Slide 58174

Member of the Helmholtz Association

BrE

20 January 2023

o

o

JUWELS Booster node topolgy

Slide 58174

=

&

= —=

Distributed Computing with MPI

= Modern compute nodes: multiple GPUs per node
= HPC: multiple nodes

= Technology for distribution: | |~

= MPI also for multi-GPU computing!

= Important: Direct GPU-to-GPU memory transfers,
no intermediate transfer to CPU

= Modern MPIs can be GPU-aware and do the right thing

Member of the Helmholtz Association 20 January 2023 Slide 58174

MPI Sketch (Pseudo-C)

#include <mpi.h>
int main(int argc, char =argv[]) {
int rank,size;
// Init MPI
MPI_Init(&argc, &argv);
// Get current rank ID and total number of ranks =*/
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
// Call routines
cudaMalloc(&buffer, nxsizeof(double));
computeKernel<<<dim_grid,dim_block>>>(buffer);
MPI_Sendrecv(buffer, n, MPI_REAL_TYPE, top, 0, buffer+n, n, MPI_REAL_TYPE, bottom, 0
< MPI_COMM_WORLD, MPI_STATUS_IGNORE);
// Shutdown
MPI_Finalize();
return 0;

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 59174

Programming GPUs
Beyond CUDA: Thrust

Thrust

Iterators! Iterators everywhere! 5.

o Thrust _ STL
CUDA — C++

Template library

A precursor to a GPU-accelerated pSTL?

Based on iterators

Data-parallel primitives (scan(), sort(), reduce(),...)
Fully compatible with plain CUDA C (comes with CUDA Toolkit)
Great with [1(){} lambdas!

— http://thrust.github.io/
http://docs.nvidia.com/cuda/thrust/

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 61174 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

http://thrust.github.io/
http://docs.nvidia.com/cuda/thrust/

Thrust

Code example

int a = 42;

int n = 10;

thrust::host_vector<float> x(n), y(n);
// fill x, y

thrust::device_vector d_x = x, d_y = vy;

thrust::transform(d_x.begin(), d_x.end(), d_y.begin(), d_y.begin(), [=]

< __device__ (auto x, auto y) {return a*x+y;});

// or:

using namespace thrust::placeholders;

thrust::transform(d_x.begin(), d_x.end(), d_y.begin(), d_y.begin(), a * _1 +

x = d_x;

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 62174 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Standard Parallelism

By now, GPUs (and other accelerators) ubiquitous; around for long time

Dedicated, custom parallelism concepts move into standards of languages

C++ Parallel STL since C++17 (2017)
Fortran do concurrent

Both allow for execution on GPU

Programmer identifies, exposes parallel code; compiler generates GPU-capable binary
Compiler: NVHPC best, but also Intel oneDPL and others

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 63174 J Forschungszentrum

pSTL Standard Parallelism Example

int a = 42;

int n = 10;

std::vector x(N), y(N);
// Fill x, y

std::transform(std::execution: :par_unseq, x.begin(), x.end(), y.begin(), y.begin(),
[=]1 (auto x, auto y) {
return axx+y;

);
@) JULICH| &5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 64|74 Forschungszentrum CENTRE

Programming GPUs
Beyond CUDA: HIP

Current GPU Leadership Systems Landscape

= Current fastest supercomputer: Frontier
at Oak Ridge (USA) with 38 000 AMD
MI250X GPUs - 1.102 EFLOP/s; also most
energy-efficient!

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 66174

https://www.flickr.com/photos/olcf/52117623843/

Current GPU Leadership Systems Landscape
ﬂ;/l

= Current fastest supercomputer: Frontier
at Oak Ridge (USA) with 38 000 AMD
MI250X GPUs - 1.102 EFLOP/s; also most
energy-efficient!

= 2023: Aurora at Argonne with > 60 000
Intel Ponte Vecchio GPUs - > 2 EFLOP/s

= 2023: El Capitan at Lawrence Livermore
with AMD MI300 GPUs - > 2 EFLOP/s

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 66174 J Forschungszentrum

https://www.flickr.com/photos/olcf/52117623843/

Current GPU Leadership Systems Landscape
W//I

= Current fastest supercomputer: Frontier
at Oak Ridge (USA) with 38 000 AMD
MI250X GPUs - 1.102 EFLOP/s; also most
energy-efficient!

= 2023: Aurora at Argonne with > 60 000
Intel Ponte Vecchio GPUs - > 2 EFLOP/s

= 2023: El Capitan at Lawrence Livermore
with AMD MI300 GPUs - > 2 EFLOP/s

= 2024: JUPITER at JSC- > 1EFLOP/s!
GPUs, details TBD

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 66174 J Forschungszentrum

https://www.flickr.com/photos/olcf/52117623843/

Current GPU Leadership Systems Landscape
ﬂ;/l

= Current fastest supercomputer: Frontier
at Oak Ridge (USA) with 38 000 AMD
MI250X GPUs - 1.102 EFLOP/s; also most
energy-efficient!

= 2023: Aurora at Argonne with > 60 000
Intel Ponte Vecchio GPUs - > 2 EFLOP/s

= 2023: El Capitan at Lawrence Livermore
with AMD MI300 GPUs - > 2 EFLOP/s

= 2024: JUPITER at JSC- > 1EFLOP/s!
GPUs, details TBD

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 66174 J Forschungszentrum

https://www.flickr.com/photos/olcf/52117623843/

AMD GPUs: HIP

HIP: AMD’s framework to utilize HPC GPUs
Heterogeneous Interface for Portability

Similar to CUDA, very similar 's/cuda/hip/"’
Can be compiled to run on NVIDIA GPUs (with CUDA) or AMD GPUs (ROCm)
Includes C++ runtime API, kernel language; CUDA conversion tools

Open Source
Very similar performance on NVIDIA GPUs like CUDA

HIP_PLATFORM=amd hipcc --offload-arch=gfx90a -std=c++14 -o daxpy daxpy.cpp

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 67174 J Forschungszentrum

HIP SAXPY

#include <cuda.h>
__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int 1 = blockIdx.x * blockDim.x + threadIdx.x;
if (1 < n)
y[i]l = a * x[i] + y[il;
}

int a = 42;

int n = 10;

float x[nl, yInl;

// fill x, vy

cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, X, y);

cudaDeviceSynchronize();

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 68174

HIP SAXPY

#include "hip/hip_runtime.h"
__global__ void saxpy_hip (int n, float a, float * x, float * y) {
int 1 = blockIdx.x * blockDim.x + threadIdx.x;
if (1 < n)
y[i]l = a * x[i] + y[il;
}

int a = 42;

int n = 10;

float x[nl, y[nl;

// Fill x, y

hipMallocManaged(&x, n * sizeof(float));
hipMallocManaged(&y, n * sizeof(float));

saxpy_hip <<<2, 5>>>(n, a, X, y);

hipDeviceSynchronize();

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 68174

Programming GPUs
Beyond CUDA: SYCL

SYCL / DPC++

= oneAPI: Intel’s framework to utilize HPC GPUs and other parallel processors APT
= Large, open-source-ish ecosystem one

= oneAPl: Umbrella name for programming models and libraries, open; also a "specification”

= DPC++: Data-Parallel C++; language built on C++ to target parallel devices, implements SYCL

and prototypes extensions

m SYCL: C++17-based model to target parallel devices, by Khronos group, open

= Intel oneAPI DPC++/C++ Compiler: New LLVM-based Intel compiler to compile DPC++

= oneMKL, oneDNN, ...: Specific libraries for domains, some open

= oneAP| DPC++ Library (oneDPL): DPC++-accompanying library with algorithms etc.

fussls,

= Programming with iterators, lambdas, queues, views

= Since OSS: Not only for Intel GPUs but also AMD, NVIDIA backends

= Higher Level: Might even give better performance then legacy CUDA
— github.com/oneapi-src

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 70174 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

https://github.com/oneapi-src

DPC++ Example

int a = 42;
int n = 10;
std::vector x(N), y(N);
// fill x, y
{
sycl::queue q(sycl::gpu_selector{});
sycl::buffer<float, 1> d_x { x.data(), sycl::range<i>(x.size())}, d_y...;
q.submit([&] (sycl::handlers h) {
auto x_access = d_x.get_access<sycl::access::mode::read> (h);
auto y_access = d_y.get_access<sycl::access::mode::read_write> (h);
h.parallel_for<class axpy>(sycl::range<i>{length}, [=] (sycl::id<1> it) {
auto i = it.get_id(0);
y_access[i] += a * x_access[i] + y_access[i];

});
b
@) JULICH| &5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 71174 Forschungszentrum CENTRE

https://github.com/jeffhammond/dpcpp-tutorial/blob/master/saxpy.cc

Programming GPUs
Beyond CUDA: MORE MODELS!!1

State-of-the-Art GPU Programming Models

GPU programming not only programming with CUDA anymore

= Much more, and CUDA only one solution
= New GPU vendors in the game now
= Many models, most offer translation from CUDA
[J Full vendor support Comprehensive support, but not by vendor bind your way through it or directly link the libraries
Indirect, but comprehensive sup.port, by vendor) Limited, probably indirect support - but at least some §+:—t C++és?tmet|mesalsc Q)
Vendor support, but not (yet) entirely comprehensive /" No direct support available, but of course one could 1SO-C- ortran Fortran
CUDA HIP SYCL OpenACC OpenMP Standard Kokkos ALPAKA
C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran Python
NVIDIA .1 .7 3 /4 5 /6 .7 .R .9 .\0 .\\ .12 13 14 15 /IE 17
AMD 18 19 .ZD /4 21 /6 22 23 .24 .24 25 /ZE 27 14 28 /JE 29
Intel 30 /31 32 /33 .34 /5 35 35 .36 .35 37 38 39 14 40 /JE 41
See appendix for details or doi:10.34732/xdvblg-r1bvif
oo .
@) JULICH | 1
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 slide 73174 Forschungszentrum | CENTRE

https://doi.org/10.34732/xdvblg-r1bvif

Conclusions

= GPUs achieve performance by specialized hardware
= Acceleration can be done by different means

= Libraries are the easiest

= OpenACC can give first entry point

= Full power with CUDA

= Threads, Blocks to expose parallelism for a kernel

= Several API routines exist

= Cooperative Groups: new entry point

= Beyond CUDA: Thrust, pSTL, HIP, SYCL, Kokkos, ...

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 74174 J Forschungszentrum

Conclusions

= GPUs achieve performance by specialized hardware
= Acceleration can be done by different means

= Libraries are the easiest

= OpenACC can give first entry point

= Full power with CUDA

= Threads, Blocks to expose parallelism for a kernel

= Several API routines exist

= Cooperative Groups: new entry point

= Beyond CUDA: Thrust, pSTL, HIP, SYCL, Kokkos, ...

Member of the Helmholtz Association 20 January 2023 Slide 74174

Thank you
attentlo
juelich- .de

for your
a.herten@fZ-

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

mailto:a.herten@fz-juelich.de

Appendix

Appendix
GPU Model/Vendor Compatibility Table
References
Glossary

Member of the Helmholtz Association 20 January 2023

Slide 2120

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Appendix
GPU Model/Vendor Compatibility Table

GPU Programming Models: Table

@ Fullvendor support
Indirect, but comprehensive
support, by vendor
Vendor support, but not (yet)
entirely comprehensive

CUDA HIP
C++ Fortran C++ Fortran
NvIDIA | @! @2 3 /4
AMD 11 12 o Ve
Intel 18 /19 20 21
Standard Kokkos
C++ Fortran C++ Fortran
NvIDIA | @ @ z 2
AMD 32 /33 34 28
Intel 37 38 39 28

Member of the Helmholtz Association 20 January 2023

Comprehensive support, but
not by vendor

Limited, probably indirect
support - but at least some
No direct support available, but

SYCL OpenACC
C++ Fortran C++
5 /6 o ®:

14 /6 15

oz /6 23
ALPAKA

C++ Fortran | Python

29 /30 31

35 /30 36

40 /30 41

Slide 4120

Fortran

of course one could ISO-C-bind
your way through it or directly
link the libraries

C++ C++ (sometimes also C)

Fortran Fortran

OpenMP
C++ Fortran
® o
o o
0 0>

@) JULICH | u=
SUPERCOMPUTING
Forschungszentrum CENTRE

GPU Programming Models: Footnotes |

: CUDA C/C++ is supported on NVIDIA GPUs through the CUDA Toolkit

: CUDA Fortran, a proprietary Fortran extension, is supported on NVIDIA GPUs via the NVIDIA HPC SDK

: HIP programs can directly use NVIDIA GPUs via a CUDA backend; HIP is maintained by AMD

: No such thing like HIP for Fortran, but AMD offers Fortran interfaces to HIP and ROCm libraries in hipfort

: SYCL can be used on NVIDIA GPUs with experimental support either in SYCL directly or in DPC++, or via hipSYCL

: No such thing like SYCL for Fortran

: OpenACC C/C++ supported on NVIDIA GPUs directly (and best) through NVIDIA HPC SDK; additional, somewhat limited
support by GCC C compiler and in LLVM through Clacc

® 8: OpenACC Fortran supported on NVIDIA GPUs directly (and best) through NVIDIA HPC SDK; additional, somewhat limited
support by GCC Fortran compiler and Flacc

B 9: OpenMP in C++ supported on NVIDIA GPUs through NVIDIA HPC SDK (albeit with a few limits), by GCC, and Clang; see
OpenMP ECP BoF on status in 2022.

B 10: OpenMP in Fortran supported on NVIDIA GPUs through NVIDIA HPC SDK (but not full OpenMP feature set available), by

GCC, and Flang

25: pSTL features supported on NVIDIA GPUs through NVIDIA HPC SDK

26: Standard Language parallel features supported on NVIDIA GPUs through NVIDIA HPC SDK

27: Kokkos supports NVIDIA GPUs by calling CUDA as part of the compilation process

28: Kokkos is a C++ model, but an official compatibility layer (Fortran Language Compatibility Layer, FLCL) is available.

g JULICH

Forschungszentrum

H E E B EEBE
~N o s WN

JULICH
SUPERCOMPUTING
CENTRE

Member of the Helmholtz Association 20 January 2023 Slide 5120

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/hpc-sdk
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/ROCmSoftwarePlatform/hipfort
https://github.com/codeplaysoftware/sycl-for-cuda/blob/cuda/sycl/doc/GetStartedWithSYCLCompiler.md#build-sycl-toolchain-with-support-for-nvidia-cuda
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md#build-dpc-toolchain-with-support-for-nvidia-cuda
https://github.com/illuhad/hipSYCL
https://gcc.gnu.org/wiki/OpenACC
https://csmd.ornl.gov/project/clacc
https://ieeexplore.ieee.org/document/9651310
https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#openmp-use
https://www.openmp.org/wp-content/uploads/2022_ECP_Community_BoF_Days-OpenMP_RoadMap_BoF.pdf
https://docs.nvidia.com/hpc-sdk/compilers/c++-parallel-algorithms/
https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos-fortran-interop

GPU Programming Models: Footnotes Il

® 29: Alpaka supports NVIDIA GPUs by calling CUDA as part of the compilation process; also, an OpenMP backend can be
used

® 30: Alpaka is a C++ model

B 31: Thereis a vast community of offloading Python code to NVIDIA GPUs, like CuPy, Numba, cuNumeric, and many others;
NVIDIA actively supports a lot of them, but has no direct product like CUDA for Python; so, the status is somewhere in
between

B 11: hipify by AMD can translate CUDA calls to HIP calls which runs natively on AMD GPUs

® 12: AMD offers a Source-to-Source translator to convert some CUDA Fortran functionality to OpenMP for AMD GPUs
(gpufort); in addition, there are ROCm library bindings for Fortran in hipfort OpenACC/CUDA Fortran Source-to-Source
translator

B 13: HIP is the preferred native programming model for AMD GPUs

® 14: SYCL can use AMD GPUs, for example with hipSYCL or DPC++ for HIP AMD

B 15: OpenACC C/C++ can be used on AMD GPUs via GCC or Clacc; also, Intel's OpenACC to OpenMP Source-to-Source
translator can be used to generate OpenMP directives from OpenACC directives

B 16: OpenACC Fortran can be used on AMD GPUs via GCC; also, AMD's gpufort Source-to-Source translator can move
OpenACC Fortran code to OpenMP Fortran code, and also Intel's translator can work

m 17: AMD offers a dedicated, Clang-based compiler for using OpenMP on AMD GPUs: AOMP; it supports both C/C++ (Clang)
and Fortran (Flang, example)

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 6120

https://github.com/alpaka-group/alpaka
https://cupy.dev/
https://numba.pydata.org/
https://developer.nvidia.com/cunumeric
https://github.com/ROCm-Developer-Tools/HIPIFY
https://github.com/ROCmSoftwarePlatform/gpufort
https://github.com/ROCmSoftwarePlatform/hipfort
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/illuhad/hipSYCL
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md#build-dpc-toolchain-with-support-for-hip-amd
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://github.com/ROCm-Developer-Tools/aomp
https://github.com/ROCm-Developer-Tools/aomp/tree/aomp-dev/examples/fortran/simple_offload

GPU Programming Models: Footnotes Il

m 32: Intel's DPC++ (oneAPI) can be compiled with an experimental HIP AMD backend, allowing to launch STL algorithms to

AMD GPUs; caveats from Intel's STL support apply

33: Currently, no (known) way to launch Standard-based parallel algorithms on AMD GPUs

34: Kokkos supports AMD GPUs through HIP

35: Alpaka supports AMD GPUs through HIP or through an OpenMP backend

36: AMD does not officially support GPU programming with Python (also not semi-officially like NVIDIA), but third-party

support is available, for example through Numba (currently inactive) or a HIP version of CuPy

® 18: SYCLomatic translates CUDA code to SYCL code, allowing it to run on Intel GPUs; also, Intel's DPC++ Compatibility Tool
can transform CUDA to SYCL

® 19: No direct support, only via ISO C bindings, but at least an example can be found on GitHub; it's pretty scarce and not by
Intel itself, though

B 20: CHIP-SPV supports mapping CUDA and HIP to OpenCL and Intel's Level Zero, making it run on Intel GPUs

21: No such thing like HIP for Fortran

B 22: SYCL is the prime programming model for Intel GPUs; actually, SYCL is only a standard, while Intel's implementation of
itis called DPC++ (Data Parallel C++), which extends the SYCL standard in various places; actually actually, Intel
namespaces everything oneAPI these days, so the full proper name is Intel oneAPI DPC++ (which incorporates a C++
compiler and also a library)

B 23: OpenACC can be used on Intel GPUs by translating the code to OpenMP with Intel's Source-to-Source translator

g JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Member of the Helmholtz Association 20 January 2023 Slide 7120

https://intel.github.io/llvm-docs/GetStartedGuide.html#build-dpc-toolchain-with-support-for-hip-amd
https://numba.pydata.org/numba-doc/latest/roc/index.html
https://docs.cupy.dev/en/latest/install.html?highlight=rocm#building-cupy-for-rocm-from-source
https://github.com/oneapi-src/SYCLomatic
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html
https://github.com/codeplaysoftware/SYCL-For-CUDA-Examples/tree/master/examples/fortran_interface
https://github.com/CHIP-SPV/chip-spv
https://www.khronos.org/sycl/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/data-parallel-c-plus-plus.html
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp

GPU Programming Models: Footnotes IV

B 24: Intel has extensive support for OpenMP through their latest compilers

37: Intel supports pSTL algorithms through their DPC++ Library (oneDPL; GitHub). It's heavily namespaced and not yet on
the same level as NVIDIA

38: With Intel oneAPI2022.3, Intel supports DO CONCURRENT with GPU offloading

39: Kokkos supports Intel GPUs through SYCL

40: Alpaka v0.9.0 introduces experimental SYCL support; also, Alpaka can use OpenMP backends

41: Not a lot of support available at the moment, but notably DPNP, a SYCL-based drop-in replacement for Numpy, and
numba-dpex, an extension of Numba for DPC++.

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 20 January 2023 Slide 8120

https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-cpp-fortran-compiler-openmp/top.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-library.html#gs.fifrh5
https://github.com/oneapi-src/oneDPL
https://www.intel.com/content/www/us/en/developer/articles/release-notes/fortran-compiler-release-notes.html
https://github.com/alpaka-group/alpaka/releases/tag/0.9.0
https://intelpython.github.io/dpnp/
https://github.com/IntelPython/numba-dpex

Appendix

References

References |

(2]

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 10120 J Forschungszentrum

Kenneth E. Hoff Ill et al. “Fast Computation of Generalized Voronoi Diagrams Using
Graphics Hardware.” In: Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH *99. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 1999, pp. 277-286. ISBN: 0-201-48560-5. DOI:
10.1145/311535.311567. URL: http://dx.doi.org/10.1145/311535.311567
(pages 3-9).

Chris McClanahan. “History and Evolution of GPU Architecture.” In: A Survey Paper
(2010). urRL: http://mcclanahoochie.com/blog/wp-
content/uploads/2011/03/gpu-hist-paper.pdf (pages3-9).

Jack Dongarra et al. TOP500. Nov. 2016. URL:
https://www.top500.0rg/lists/2016/11/ (pages 3-9).

JULICH
SUPERCOMPUTING
CENTRE

https://doi.org/10.1145/311535.311567
http://dx.doi.org/10.1145/311535.311567
http://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf
http://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf
https://www.top500.org/lists/2016/11/

References Il

[5] Jack Dongarra et al. Green500. Nov. 2016. URL:
https://www.top500.0rg/green500/1ists/2016/11/ (pages 3-9).

[6] Karl Rupp. Pictures: CPU/GPU Performance Comparison. URL:
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-
characteristics-over-time/ (pages 13, 14).

[13] Wes Breazell. Picture: Wizard. urL:
https://thenounproject.com/wes13/collection/its-a-wizards-world/
(pages 46-50).

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 11120 J Forschungszentrum

https://www.top500.org/green500/lists/2016/11/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://thenounproject.com/wes13/collection/its-a-wizards-world/

References: Images, Graphics |

[1] Héctor J. Rivas. Color Reels. Freely available at Unsplash. URL:
https://unsplash.com/photos/87hFrPk3V-s.

[7] Forschungszentrum Jilich GmbH (Ralf-Uwe Limbach). JUWELS Booster.

[8] Mark Lee. Picture: kawasaki ninja. URL:
https://www.flickr.com/photos/pochacco20/39030210/ (pages 19, 20).

[9] Shearings Holidays. Picture: Shearings coach 636. URL:
https://www.flickr.com/photos/shearings/13583388025/ (pages 19, 20).

[10] Nvidia Corporation. Pictures: Volta GPU. Volta Architecture Whitepaper. URL:
https://images.nvidia.com/content/volta-architecture/pdf/Volta-
Architecture-Whitepaper-v1.0.pdf.

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 12120 J Forschungszentrum

https://unsplash.com/photos/87hFrPk3V-s
https://www.flickr.com/photos/pochacco20/39030210/
https://www.flickr.com/photos/shearings/13583388025/
https://images.nvidia.com/content/volta-architecture/pdf/Volta-Architecture-Whitepaper-v1.0.pdf
https://images.nvidia.com/content/volta-architecture/pdf/Volta-Architecture-Whitepaper-v1.0.pdf

References: Images, Graphics I

[11] Nvidia Corporation. Pictures: Ampere GPU. Ampere Architecture Whitepaper. URL:
http://www.nvidia.com/nvidia-ampere-architecture-whitepaper
(pages 35-37).

[12] Nvidia Corporation. Pictures: Hopper GPU. Nvidia Developer Technical Blog: NVIDIA
Hopper Architecture In-Depth. URL: https:
//developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/.

[14] OLCF at ORNL. Picture: Frontier. Flickr. URL:
https://www.flickr.com/photos/olcf/52117623843/.

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 13120 J Forschungszentrum

http://www.nvidia.com/nvidia-ampere-architecture-whitepaper
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://www.flickr.com/photos/olcf/52117623843/

Appendix

Glossary

Glossary |

AMD Manufacturer of CPUs and GPUs. 3,4,5,6,7, 8,9, 60,61, 62,63, 64,65, 198, 199
Ampere GPU architecture from NVIDIA (announced 2019). 16, 17

APl A programmatic interface to software by well-defined functions. Short for
application programming interface. 60, 61, 62, 63, 64, 65, 199

ATl Canada-based GPUs manufacturing company; bought by AMD in 2006. 3, 4, 5, 6,
78,9

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++.2,3,4,5,6,7,8,9,60,61, 62,63, 64, 65,66,67,68,69,70,71,72,73, 74,75,
76,94, 95,96, 101, 102, 103, 104, 105, 164, 181, 182, 199

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 15120 J Forschungszentrum

Glossary I

HIP GPU programming model by AMD to target their own and NVIDIA GPUs with one
combined language. Short for Heterogeneous-compute Interface for Portability.
60, 61, 62, 63, 64, 65

JUWELS Jiilich’s new supercomputer, the successor of JUQUEEN. 15, 16, 17

NVIDIA US technology company creating GPUs. 3,4,5,6,7,8,9, 15, 16, 17, 35, 36, 37, 60,
61, 62,63, 64,65,137,197, 198, 200

NVLink NVIDIA’s communication protocol connecting CPU <+ GPU and GPU <+ GPU with
high bandwidth. 200

OpenACC Directive-based programming, primarily for many-core machines. 55, 56, 57, 58,
59,181, 182

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 16120 J

JULICH
SUPERCOMPUTING

Forschungszentrum CENTRE

Glossary Il

OpenCL The Open Computing Language. Framework for writing code for heterogeneous
architectures (CPU, GPU, DSP, FPGA). The alternative to CUDA. 3,4,5,6,7,8, 9,
60,61, 62, 63, 64, 65

OpenGL The Open Graphics Library, an APl for rendering graphics across different
hardware architectures. 3,4,5,6,7,8,9

OpenMP Directive-based programming, primarily for multi-threaded machines. 55, 56,
57,58, 59

ROCm AMD software stack and platform to program AMD GPUs. Short for Radeon Open
Compute (Radeon is the GPU product line of AMD). 60, 61, 62, 63, 64, 65

SAXPY Single-precision A x X+ Y. Asimple code example of scaling a vector and adding
an offset. 43,67, 174,175

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 17120 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Glossary IV

Tesla The GPU product line for general purpose computing computing of NVIDIA. 15,
101, 102, 103, 104, 105

Thrust A parallel algorithms library for (among others) GPUs. See
https://thrust.github.io/. 164

V100 A large GPU with the Volta architecture from NVIDIA. It employs NVLink 2 as its
interconnect and has fast HBM2 memory. Additionally, it features Tensorcores for
Deep Learning and Independent Thread Scheduling. 101, 102, 103, 104, 105

Volta GPU architecture from NVIDIA (announced 2017). 200
CG Cooperative Groups. 143, 144, 150

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 18120 J Forschungszentrum

https://thrust.github.io/

Glossary V

CPU Central Processing Unit. 15, 19, 20, 21, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 43, 60,
61,62,63,64,65,107,108, 109, 115,116,117, 118,119,127, 128, 129, 130, 131,
132, 135,197,198, 199

GPU Graphics Processing Unit. 2, 3,4,5,6,7,8,9, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25,
26,27, 28,29, 30, 31, 32, 33, 34, 35, 36, 37, 42, 46, 47, 48, 49, 50, 51, 54, 55, 56, 57,
60, 61,62, 63, 64,65, 66, 77,78, 79, 94, 95, 96, 101, 102, 103, 104, 105, 107, 108,
109, 110,111,112,115, 116,117,118, 119, 127, 128, 129, 130, 131, 132, 134, 135,
136,137, 141, 142, 153, 163, 168, 176, 179, 181, 182, 197, 198, 199, 200

SIMD Single Instruction, Multiple Data. 28, 29, 30, 31, 32, 33, 34, 35, 36, 37

SIMT Single Instruction, Multiple Threads. 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34,35, 36,37

@) JULICH
Member of the Helmholtz Association 20 January 2023 Slide 19120 J

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Glossary VI

SM Streaming Multiprocessor. 28, 29, 30, 31, 32, 33, 34, 35, 36, 37
SMT Simultaneous Multithreading. 28, 29, 30, 31, 32, 33, 34, 35, 36, 37

@) JULICH| &5
SUPERCOMPUTING
Member of the Helmholtz Association 20 January 2023 Slide 20120 Forschungszentrum CENTRE

	Outline
	Introduction
	GPU History
	JUPITER
	JUWELS
	JUWELS Cluster
	JUWELS Booster

	Platform
	Comparisons
	GPU Architecture
	Summary

	Programming GPUs
	Libraries
	Directives
	CUDA C/C++
	Kernels
	Grid, Blocks
	Memory Management
	Unified Memory

	Performance Analysis
	Beyond CUDA
	Cooperative Groups
	MPI
	Thrust
	Standard Parallelism
	HIP
	SYCL
	MORE MODELS!!1

	Appendix
	Appendix
	GPU Model/Vendor Compatibility Table
	References

	References
	References
	Glossary

	Glossary
	Acronyms

