
GPU Programming
HPC: Modern Architectures & TrendsMA-INF 1106, Bonn
20 January 2023 Dr. Andreas Herten Accelerating Devices Lab, Forschungszentrum Jülich

Member of the Helmholtz Association

Outline
Introduction

GPU History
JUPITER
JUWELS

JUWELS Cluster
JUWELS Booster

Platform
Comparisons
GPU Architecture
Summary

Programming GPUs
Libraries
Directives
CUDA C/C++

Kernels
Grid, Blocks
Memory Management
Unified Memory

Performance Analysis
Beyond CUDA

Cooperative Groups
MPI
Thrust
Standard Parallelism
HIP
SYCL
MORE MODELS!!1

Member of the Helmholtz Association 20 January 2023 Slide 1 74

History of GPUs
A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

2007 CUDA
2009 OpenCL
2022 Top 500: 32%with GPUs (#1, #2; 7 of top 10) [4], Green 500: 9 of top 10 with GPUs [5]
2022 : Leonardo (250 PFLOP/s*, Italy), NVIDIA GPUs; LUMI (552 PFLOP/s, Finland), AMD GPUs

: Frontier (Rmax = 1.102 EFLOP/s, ORNL), AMD GPUs
Soon : JUPITER (≈ 1 EFLOP/s, JSC)

: Aurora (≈ 2 EFLOP/s, Argonne), Intel GPUs; El Capitan (≈ 2 EFLOP/s, LLNL), AMD GPUs

*: Effective FLOP/s, not theoretical peak

Member of the Helmholtz Association 20 January 2023 Slide 2 74

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

History of GPUs
A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

2007 CUDA
2009 OpenCL
2022 Top 500: 32%with GPUs (#1, #2; 7 of top 10) [4], Green 500: 9 of top 10 with GPUs [5]
2022 : Leonardo (250 PFLOP/s*, Italy), NVIDIA GPUs; LUMI (552 PFLOP/s, Finland), AMD GPUs

: Frontier (Rmax = 1.102 EFLOP/s, ORNL), AMD GPUs
Soon : JUPITER (≈ 1 EFLOP/s, JSC)

: Aurora (≈ 2 EFLOP/s, Argonne), Intel GPUs; El Capitan (≈ 2 EFLOP/s, LLNL), AMD GPUs

*: Effective FLOP/s, not theoretical peak

Member of the Helmholtz Association 20 January 2023 Slide 2 74

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

History of GPUs
A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

2007 CUDA

2009 OpenCL
2022 Top 500: 32%with GPUs (#1, #2; 7 of top 10) [4], Green 500: 9 of top 10 with GPUs [5]
2022 : Leonardo (250 PFLOP/s*, Italy), NVIDIA GPUs; LUMI (552 PFLOP/s, Finland), AMD GPUs

: Frontier (Rmax = 1.102 EFLOP/s, ORNL), AMD GPUs
Soon : JUPITER (≈ 1 EFLOP/s, JSC)

: Aurora (≈ 2 EFLOP/s, Argonne), Intel GPUs; El Capitan (≈ 2 EFLOP/s, LLNL), AMD GPUs

*: Effective FLOP/s, not theoretical peak

Member of the Helmholtz Association 20 January 2023 Slide 2 74

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

History of GPUs
A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

2007 CUDA
2009 OpenCL

2022 Top 500: 32%with GPUs (#1, #2; 7 of top 10) [4], Green 500: 9 of top 10 with GPUs [5]
2022 : Leonardo (250 PFLOP/s*, Italy), NVIDIA GPUs; LUMI (552 PFLOP/s, Finland), AMD GPUs

: Frontier (Rmax = 1.102 EFLOP/s, ORNL), AMD GPUs
Soon : JUPITER (≈ 1 EFLOP/s, JSC)

: Aurora (≈ 2 EFLOP/s, Argonne), Intel GPUs; El Capitan (≈ 2 EFLOP/s, LLNL), AMD GPUs

*: Effective FLOP/s, not theoretical peak

Member of the Helmholtz Association 20 January 2023 Slide 2 74

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

History of GPUs
A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

2007 CUDA
2009 OpenCL
2022 Top 500: 32%with GPUs (#1, #2; 7 of top 10) [4], Green 500: 9 of top 10 with GPUs [5]

2022 : Leonardo (250 PFLOP/s*, Italy), NVIDIA GPUs; LUMI (552 PFLOP/s, Finland), AMD GPUs
: Frontier (Rmax = 1.102 EFLOP/s, ORNL), AMD GPUs

Soon : JUPITER (≈ 1 EFLOP/s, JSC)
: Aurora (≈ 2 EFLOP/s, Argonne), Intel GPUs; El Capitan (≈ 2 EFLOP/s, LLNL), AMD GPUs

*: Effective FLOP/s, not theoretical peak

Member of the Helmholtz Association 20 January 2023 Slide 2 74

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

History of GPUs
A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

2007 CUDA
2009 OpenCL
2022 Top 500: 32%with GPUs (#1, #2; 7 of top 10) [4], Green 500: 9 of top 10 with GPUs [5]
2022 : Leonardo (250 PFLOP/s*, Italy), NVIDIA GPUs; LUMI (552 PFLOP/s, Finland), AMD GPUs

: Frontier (Rmax = 1.102 EFLOP/s, ORNL), AMD GPUs

Soon : JUPITER (≈ 1 EFLOP/s, JSC)
: Aurora (≈ 2 EFLOP/s, Argonne), Intel GPUs; El Capitan (≈ 2 EFLOP/s, LLNL), AMD GPUs

*: Effective FLOP/s, not theoretical peak

Member of the Helmholtz Association 20 January 2023 Slide 2 74

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

History of GPUs
A short but unparalleled story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and floating-point
support; 2003: DirectX 9 at ATI

2007 CUDA
2009 OpenCL
2022 Top 500: 32%with GPUs (#1, #2; 7 of top 10) [4], Green 500: 9 of top 10 with GPUs [5]
2022 : Leonardo (250 PFLOP/s*, Italy), NVIDIA GPUs; LUMI (552 PFLOP/s, Finland), AMD GPUs

: Frontier (Rmax = 1.102 EFLOP/s, ORNL), AMD GPUs
Soon : JUPITER (≈ 1 EFLOP/s, JSC)

: Aurora (≈ 2 EFLOP/s, Argonne), Intel GPUs; El Capitan (≈ 2 EFLOP/s, LLNL), AMD GPUs

*: Effective FLOP/s, not theoretical peak

Member of the Helmholtz Association 20 January 2023 Slide 2 74

https://www.cineca.it/en/hot-topics/Leonardo-announce
https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.olcf.ornl.gov/frontier/
https://en.wikipedia.org/wiki/Aurora_(supercomputer)
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

JUPITER
Recent Developments

Jülich (JSC) selected as Hosting Entity for first European Exascale supercomputer:
JUPITER
System procured together with EuroHPC JU
After long preparation, RFI finally published on Monday!
Nowwe start the exciting negotiations…

Member of the Helmholtz Association 20 January 2023 Slide 3 74

JUPITER
Recent Developments

Jülich (JSC) selected as Hosting Entity for first European Exascale supercomputer:
JUPITER
System procured together with EuroHPC JU
After long preparation, RFI finally published on Monday!
Nowwe start the exciting negotiations…

Descriptive document EUROHPC/2023/CD/0001 1/116

European High Performance Computing Joint Undertaking

GENERAL INVITATION TO TENDER

EUROHPC/2023/CD/0001

Descriptive Document

Acquisition, delivery, installation and hardware and software
maintenance of JUPITER Exascale Supercomputer for the European High

Performance Computing Joint Undertaking (EuroHPC)

Member of the Helmholtz Association 20 January 2023 Slide 3 74

JUPITER
Recent Developments

Jülich (JSC) selected as Hosting Entity for first European Exascale supercomputer:
JUPITER
System procured together with EuroHPC JU
After long preparation, RFI finally published on Monday!
Nowwe start the exciting negotiations…

Preliminary information concerning the invitation to tender

Descriptive document EUROHPC/2023/CD/0001 20/116

The system must be able to accommodate additional future modules not covered by this procurement, such
as an interactive computation and visualization system, as well as future technology modules, such as a
module to explore future iterations of the European processor and accelerator technology, a quantum
computer, a neuromorphic or photonic computing system.

The control plane for JUPITER must be based on software components that can provide scheduling, resource
management, system provisioning, network management, orchestration and monitoring/metering
capabilities for a modular environment in a high availability fashion. The installation must rely on
configuration management to ensure the highest level of reproducibility and automation, including
component replacement and reinstallation when necessary for operational reasons.

The JUPITER software components must enable a dynamic MSA architecture without software restrictions.
Scheduler, resource manager and MPI runtime, among others, must enable advanced dynamic MSA features
and deliver the features and benefits documented by the DEEP research projects.

For some control plane components (see above), JSC wishes to take advantage of its own xOPS software stack
complemented with components that are a result of the collaborative work developed in the ParaStation
consortium. Proposals for further (possibly module-specific) solutions that are optimized for the hardware
offered will also be accepted if the above requirements can be realized in a superior or equal manner.

Considering the core capabilities of JUPITER's hardware and software, the centre stage is taken by
accelerated devices: At the heart of JUPITER is the highly scalable Booster module, with the option of having
two accelerated, tightly connected modules, built on the same accelerator technologies and networks, if that
provides additional value. Given the technology developments in recent years, graphical processing unit
(GPU) based accelerators are expected to provide at least one exaflop of double precision floating point
performance as to the sustained HPL’s Rmax within the aforementioned power footprint. Lower floating-point
precision will reach even higher performance numbers. Those accelerators are able to handle both classical
HPC and novel AI workloads and are well suited for HPDA. A high-bandwidth and low-latency interconnect
for the Booster will be required to provide network capabilities for highly parallel workloads and, at the same
time, fast access to the storage backends. Based on positive experience with the JUWELS Booster Dragonfly
topology that provides 200 Gbit per GPU (or 800 Gbit per node) this is considered also an appropriate
proposal for JUPITER, which is expected to be at least on-par, while an even higher per-node bandwidth
would be valued. In addition, a sub-partition of JUPITER’s Booster for communication-intensive data-analytics
workloads, which provides more inter- and intra-node bandwidth, is considered favourable.

The general purpose Cluster module of JUPITER is based on central processing units (CPU). As such, it targets
codes that are not easily parallelized using accelerators, and which are likely to have irregular memory access
patterns. As a result of this target the focus of this module is on a strong memory subsystem, such that the
aforementioned codes benefit as much as possible from this architectural choice, while ensuring minimum
energy consumption. This implies that CPUs with highest possible byte-per-flop rate are preferred for the
JUPITER Cluster, e.g. as put forward by the European processor initiative. When considering the JUWELS
Cluster as reference for the sizing of the JUPITER Cluster, one would estimate 2500 dual-socket nodes to be
a favourable node count. Different memory configurations have to be considered, where 512 GB per node is
the requested minimum capacity that we currently see for systems with 128 cores, while at least 5 % of the
nodes should have a capacity of at least 1 TB.

Member of the Helmholtz Association 20 January 2023 Slide 3 74

Status Quo Across Architectures
Performance

10
2

10
3

10
4

 2008 2010 2012 2014 2016 2018 2020

HD 3
870

HD 4
870

HD 5
870

HD 6
970

HD 6
970

HD 7
970 G

Hz
Ed.

HD 8
970

Fire
Pro

 W
9100

Fire
Pro

 S
9150

M
I2

5

MI60

MI100

X5482

X5492

W
5590

X5680

X5690

E5-2
690

E5-2
697 v

2

E5-2
699 v

3

E5-2
699 v

3

E5-2
699 v

4

Pla
tin

um
 8

180 Pla
tin

um
 9

282

Tesla
 C

1060

Tesla
 C

1060
Tesla

 C
2050 Tesla

 M
2090

Tesla
 K

20

Tesla
 K

20X

Tesla
 K

40

Tesla
 K

40

Tesla
 P

100 Tesla
 V

100

A100

Xeon Phi 7120 (KNC)

X
eo

n
P
hi

 7
29

0
(K

N
L)

G
F

L
O

P
/s

e
c

End of Year

INTEL Xeon CPUs

NVIDIA Tesla GPUs

AMD Radeon GPUs

INTEL Xeon Phis

Theoretical Peak Performance, Double Precision

Gr
ap

hi
c:
Ru

pp
[6
]

Member of the Helmholtz Association 20 January 2023 Slide 4 74

Status Quo Across Architectures
Memory Bandwidth

10
1

10
2

10
3

 2008 2010 2012 2014 2016 2018 2020

HD 3870

HD 4870
HD 5870

HD 6970

HD 6970 HD 7970 G
Hz Ed.

HD 8970
Fire

Pro W
9100

Fire
Pro S9150

MI25

MI60 MI100

X5482
X5492 W5590

X5680
X5690

E5-2690
E5-2697 v2

E5-2699 v3

E5-2699 v3

E5-2699 v4
Platin

um 8180
Platin

um 9282

Tesla C
1060

Tesla C
1060 Tesla C

2050
Tesla M

2090

Tesla K20 Tesla K20X

Tesla K40

Tesla P100

Tesla V100

A100

Xeon Phi 7120 (KNC)

X
eo

n
P
hi

 7
29

0
(K

N
L)

G
B

/s
e
c

End of Year

INTEL Xeon CPUs

NVIDIA Tesla GPUs

AMD Radeon GPUs

INTEL Xeon Phis

Theoretical Peak Memory Bandwidth Comparison

Gr
ap

hi
c:
Ru

pp
[6
]

Member of the Helmholtz Association 20 January 2023 Slide 4 74

JUWELS Cluster – Jülich’s Scalable System
2500 nodes with Intel Xeon CPUs (2× 24 cores)
46+ 10 nodes with 4 NVIDIA Tesla V100 cards (16 GB memory)
10.4 (CPU) + 1.6 (GPU) PFLOP/s peak performance (Top500: #86)

Member of the Helmholtz Association 20 January 2023 Slide 5 74

JUWELS Booster – Scaling Higher!
936 nodes with AMD EPYC Rome CPUs (2× 24 cores)

Each with 4 NVIDIA A100 Ampere GPUs (each: FP64TC: 19.5
FP64: 9.7 TFLOP/s, 40 GB memory)

InfiniBand DragonFly+ HDR-200 network; 4× 200Gbit/s per node

Member of the Helmholtz Association 20 January 2023 Slide 6 74

JUWELS Booster – Scaling Higher!
936 nodes with AMD EPYC Rome CPUs (2× 24 cores)

Each with 4 NVIDIA A100 Ampere GPUs (each: FP64TC: 19.5
FP64: 9.7 TFLOP/s, 40 GB memory)

InfiniBand DragonFly+ HDR-200 network; 4× 200Gbit/s per node

Top500 List Nov 2022:
#1 Europe
#8 World
#4* Top/Green500

Member of the Helmholtz Association 20 January 2023 Slide 6 74

https://www.top500.org/lists/top500/2021/11/

Platform

CPU vs. GPU
Amatter of specialties

Transporting one

Gr
ap

hi
cs
:L
ee

[8
]a

nd
Sh

ea
rin

gs
H
ol
id
ay
s[
9]

Transporting many

Member of the Helmholtz Association 20 January 2023 Slide 8 74

CPU vs. GPU
Amatter of specialties

Transporting one

Gr
ap

hi
cs
:L
ee

[8
]a

nd
Sh

ea
rin

gs
H
ol
id
ay
s[
9]

Transporting many

Member of the Helmholtz Association 20 January 2023 Slide 8 74

CPU vs. GPU
Chip

ALUALU

ALU ALU
Control

Cache

DRAM DRAM

Member of the Helmholtz Association 20 January 2023 Slide 9 74

GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40 GB), but high-speedmemory 1555 GB/s
Stage data to GPUmemory: via PCIe 4 bus (32 GB/s)

Stage automatically (Unified Memory), or manually
Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

Single Instruction, Multiple Threads (SIMT)
V100

32GB RAM, 900 GB/s
A100

40GB RAM, 1555 GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
1555GB/s

PCIe 4
≈32GB/s

Member of the Helmholtz Association 20 January 2023 Slide 10 74

GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40 GB), but high-speedmemory 1555 GB/s
Stage data to GPUmemory: via PCIe 4 bus (32 GB/s)

Stage automatically (Unified Memory), or manually
Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

SIMT
V100

32GB RAM, 900 GB/s
A100

40GB RAM, 1555 GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
1555GB/s

PCIe 4
≈32GB/s

Member of the Helmholtz Association 20 January 2023 Slide 10 74

GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40 GB), but high-speedmemory 1555 GB/s
Stage data to GPUmemory: via PCIe 4 bus (32 GB/s)
Stage automatically (Unified Memory), or manually

Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

SIMT
V100

32GB RAM, 900 GB/s
A100

40GB RAM, 1555 GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
1555GB/s

PCIe 4
≈32GB/s

Member of the Helmholtz Association 20 January 2023 Slide 10 74

GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40 GB), but high-speedmemory 1555 GB/s
Stage data to GPUmemory: via PCIe 4 bus (32 GB/s)
Stage automatically (Unified Memory), or manually

Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

SIMT
V100

32GB RAM, 900 GB/s
A100

40GB RAM, 1555 GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
1555GB/s

PCIe 4
≈32GB/s

Member of the Helmholtz Association 20 January 2023 Slide 10 74

GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40 GB), but high-speedmemory 1555 GB/s
Stage data to GPUmemory: via PCIe 4 bus (32 GB/s)
Stage automatically (Unified Memory), or manually

Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

SIMT

V100
32GB RAM, 900 GB/s

A100
40GB RAM, 1555 GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
1555GB/s

PCIe 4
≈32GB/s

Member of the Helmholtz Association 20 January 2023 Slide 10 74

GPU Architecture Design
GPU optimized to hide latency

Memory
GPU has small (40 GB), but high-speedmemory 1555 GB/s
Stage data to GPUmemory: via PCIe 4 bus (32 GB/s)
Stage automatically (Unified Memory), or manually

Two engines: Overlap compute and copy
Copy Compute Copy Compute

Copy Compute Copy Compute

SIMT
V100

32GB RAM, 900 GB/s
A100

40GB RAM, 1555 GB/s
DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
1555GB/s

PCIe 4
≈32GB/s

Member of the Helmholtz Association 20 January 2023 Slide 10 74

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)

Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

+

+

+

C0

C1

C2

C3

=

=

=

=

Scalar

Member of the Helmholtz Association 20 January 2023 Slide 11 74

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)

Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Member of the Helmholtz Association 20 January 2023 Slide 11 74

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Member of the Helmholtz Association 20 January 2023 Slide 11 74

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

Member of the Helmholtz Association 20 January 2023 Slide 11 74

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

Member of the Helmholtz Association 20 January 2023 Slide 11 74

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 20 January 2023 Slide 11 74

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 20 January 2023 Slide 11 74

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

NVIDIA GA100

Gr
ap

hi
cs
:N

vi
di
a
Co

rp
or
at
io
n
[1
1]

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 20 January 2023 Slide 11 74

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

NVIDIA GA100

Gr
ap

hi
cs
:N

vi
di
a
Co

rp
or
at
io
n
[1
1]

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 20 January 2023 Slide 11 74

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

NVIDIA GA100

Multiprocessor

Gr
ap

hi
cs
:N

vi
di
a
Co

rp
or
at
io
n
[1
1]

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 20 January 2023 Slide 11 74

A100 vs H100
Comparison of current vs. next generation

A100 H100

Member of the Helmholtz Association 20 January 2023 Slide 12 74

A100 vs H100
Comparison of current vs. next generation

A100 H100

Member of the Helmholtz Association 20 January 2023 Slide 12 74

A100 vs H100
Comparison of current vs. next generation

A100 H100

Member of the Helmholtz Association 20 January 2023 Slide 12 74

CPU vs. GPU
Let’s summarize this!

Optimized for low latency
+ Large main memory
+ Fast clock rate
+ Large caches
+ Branch prediction
+ Powerful ALU
− Relatively lowmemory bandwidth
− Cachemisses costly
− Low performance per watt

Optimized for high throughput
+ High bandwidth main memory
+ Latency tolerant (parallelism)
+ More compute resources
+ High performance per watt
− Limited memory capacity
− Low per-thread performance
− Extension card

Member of the Helmholtz Association 20 January 2023 Slide 13 74

Programming GPUs

Preface: CPU
A simple CPU program!

SAXPY: y⃗ = a⃗x+ y⃗, with single precision
Part of LAPACK BLAS Level 1
void saxpy(int n, float a, float * x, float * y) {

for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy(n, a, x, y);

Member of the Helmholtz Association 20 January 2023 Slide 15 74

http://www.netlib.org/lapack/

Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 20 January 2023 Slide 16 74

Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 20 January 2023 Slide 16 74

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[1
3]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

Member of the Helmholtz Association 20 January 2023 Slide 17 74

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[1
3]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

Member of the Helmholtz Association 20 January 2023 Slide 17 74

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[1
3]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

Member of the Helmholtz Association 20 January 2023 Slide 17 74

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[1
3]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

Member of the Helmholtz Association 20 January 2023 Slide 17 74

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[1
3]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

Member of the Helmholtz Association 20 January 2023 Slide 17 74

cuBLAS
Parallel algebra

GPU-parallel BLAS (all 152 routines)
Single, double, complex data types
Constant competition with Intel’s MKL
Multi-GPU support

→ https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas

Member of the Helmholtz Association 20 January 2023 Slide 18 74

https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]));
cudaMallocManaged(&d_y, n * sizeof(y[0]));

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Member of the Helmholtz Association 20 January 2023 Slide 19 74

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]));
cudaMallocManaged(&d_y, n * sizeof(y[0]));

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Allocate GPUmemory

Call BLAS routine

Copy result to host

Finalize

Member of the Helmholtz Association 20 January 2023 Slide 20 74

Programming GPUs
Directives

GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i++) {};

OpenACC: Especially for GPUs;OpenMP: Has GPU support
Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
A little harder to debug

Member of the Helmholtz Association 20 January 2023 Slide 22 74

GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i++) {};

OpenACC: Especially for GPUs;OpenMP: Has GPU support
Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
A little harder to debug

Member of the Helmholtz Association 20 January 2023 Slide 22 74

GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i++) {};

OpenACC: Especially for GPUs;OpenMP: Has GPU support
Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
A little harder to debug

Member of the Helmholtz Association 20 January 2023 Slide 22 74

OpenACC / OpenMP
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc kernels
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

float a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);

Member of the Helmholtz Association 20 January 2023 Slide 23 74

OpenACC / OpenMP
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma omp target map(to:x[0:n]) map(tofrom:y[0:n]) loop
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

float a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);

Member of the Helmholtz Association 20 January 2023 Slide 23 74

Programming GPUs Directly
Finally…

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009
Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran; andmore in NVIDIA HPC SDK

HIP AMD’s unified programmingmodel for AMD (via ROCm) and NVIDIA GPUs 2016+
SYCL Intel’s unified programmingmodel for CPUs and GPUs (also: DPC++)

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Member of the Helmholtz Association 20 January 2023 Slide 24 74

Programming GPUs Directly
Finally…

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009
Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran; andmore in NVIDIA HPC SDK

HIP AMD’s unified programmingmodel for AMD (via ROCm) and NVIDIA GPUs 2016+
SYCL Intel’s unified programmingmodel for CPUs and GPUs (also: DPC++)

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Member of the Helmholtz Association 20 January 2023 Slide 24 74

Programming GPUs Directly
Finally…

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009
Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran; andmore in NVIDIA HPC SDK

HIP AMD’s unified programmingmodel for AMD (via ROCm) and NVIDIA GPUs 2016+
SYCL Intel’s unified programmingmodel for CPUs and GPUs (also: DPC++)

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Member of the Helmholtz Association 20 January 2023 Slide 24 74

Programming GPUs Directly
Finally…

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009
Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran; andmore in NVIDIA HPC SDK

HIP AMD’s unified programmingmodel for AMD (via ROCm) and NVIDIA GPUs 2016+
SYCL Intel’s unified programmingmodel for CPUs and GPUs (also: DPC++)

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Member of the Helmholtz Association 20 January 2023 Slide 24 74

Programming GPUs Directly
Finally…

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009
Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran; andmore in NVIDIA HPC SDK

HIP AMD’s unified programmingmodel for AMD (via ROCm) and NVIDIA GPUs 2016+
SYCL Intel’s unified programmingmodel for CPUs and GPUs (also: DPC++)

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Member of the Helmholtz Association 20 January 2023 Slide 24 74

Programming GPUs Directly
Finally…

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009
Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran; andmore in NVIDIA HPC SDK

HIP AMD’s unified programmingmodel for AMD (via ROCm) and NVIDIA GPUs 2016+
SYCL Intel’s unified programmingmodel for CPUs and GPUs (also: DPC++)

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Member of the Helmholtz Association 20 January 2023 Slide 24 74

Programming GPUs
CUDA C/C++

CUDA SAXPY
With runtime-managed data transfers

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Member of the Helmholtz Association 20 January 2023 Slide 26 74

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 20 January 2023 Slide 27 74

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Thread

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 20 January 2023 Slide 27 74

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 20 January 2023 Slide 27 74

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 20 January 2023 Slide 27 74

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Block

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

0

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 20 January 2023 Slide 27 74

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 20 January 2023 Slide 27 74

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 20 January 2023 Slide 27 74

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 20 January 2023 Slide 27 74

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 20 January 2023 Slide 27 74

Kernel Functions

Kernel: Parallel GPU function
Executed by each thread
In parallel
Called from host or device

All threads execute same code; but can take different paths in program flow (some
penalty)
Info about thread: local, global IDs
int currentThreadId = threadIdx.x;
float x = input[currentThreadId];
output[currentThreadId] = x*x;

Member of the Helmholtz Association 20 January 2023 Slide 28 74

Kernel Functions

Kernel: Parallel GPU function
Executed by each thread
In parallel
Called from host or device

All threads execute same code; but can take different paths in program flow (some
penalty)

Info about thread: local, global IDs
int currentThreadId = threadIdx.x;
float x = input[currentThreadId];
output[currentThreadId] = x*x;

Member of the Helmholtz Association 20 January 2023 Slide 28 74

Kernel Functions

Kernel: Parallel GPU function
Executed by each thread
In parallel
Called from host or device

All threads execute same code; but can take different paths in program flow (some
penalty)
Info about thread: local, global IDs
int currentThreadId = threadIdx.x;
float x = input[currentThreadId];
output[currentThreadId] = x*x;

Member of the Helmholtz Association 20 January 2023 Slide 28 74

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops

void scale(float scale, float * in, float * out, int N) {
for (int i = 0; i < N; i++)

out[i] = scale * in[i];
}

Member of the Helmholtz Association 20 January 2023 Slide 29 74

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops

void scale(float scale, float * in, float * out, int N) {
for (

int i = 0;
i < N;
i++

)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 20 January 2023 Slide 29 74

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index

void scale(float scale, float * in, float * out, int N) {
int i = 0
for (;

i < N;
i++

)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 20 January 2023 Slide 29 74

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition

void scale(float scale, float * in, float * out, int N) {
int i = 0
for (;

;
i++

)
if (i < N)

out[i] = scale * in[i];
}

Member of the Helmholtz Association 20 January 2023 Slide 29 74

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for

void scale(float scale, float * in, float * out, int N) {
int i = 0

if (i < N)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 20 January 2023 Slide 29 74

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

__global__ void scale(float scale, float * in, float * out, int N) {
int i = 0

if (i < N)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 20 January 2023 Slide 29 74

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

Replace i by threadIdx.x
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x;

if (i < N)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 20 January 2023 Slide 29 74

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

Replace i by threadIdx.x … including block configuration
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x + blockIdx.x * blockDim.x;

if (i < N)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 20 January 2023 Slide 29 74

Kernel Conversion
Summary

C function with explicit loop
void scale(float scale, float * in, float * out, int N) {

for (int i = 0; i < N; i++)
out[i] = scale * in[i];

}
CUDA kernel with implicit loop
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x + blockIdx.x * blockDim.x;
if (i < N)

out[i] = scale * in[i];
}

Member of the Helmholtz Association 20 January 2023 Slide 30 74

Kernel Launch

kernel<<<int gridDim, int blockDim>>>(...)

Parallel threads of kernel launched with triple-chevron syntax
Total number of threads, divided into

Number of blocks on the grid (gridDim)
Number of threads per block (blockDim)

Call returns immediately; kernel launch is asynchronous!
Example:
int nThreads = 32;
scale<<<N/nThreads, nThreads>>>(23, in, out, N)
Possibility for toomany threads; include termination condition into kernel!

Member of the Helmholtz Association 20 January 2023 Slide 31 74

Kernel Launch

kernel<<<int gridDim, int blockDim>>>(...)

Parallel threads of kernel launched with triple-chevron syntax
Total number of threads, divided into

Number of blocks on the grid (gridDim)
Number of threads per block (blockDim)

Call returns immediately; kernel launch is asynchronous!
Example:
int nThreads = 32;
scale<<<N/nThreads, nThreads>>>(23, in, out, N)
Possibility for toomany threads; include termination condition into kernel!

×

Member of the Helmholtz Association 20 January 2023 Slide 31 74

Kernel Launch

kernel<<<int gridDim, int blockDim>>>(...)

Parallel threads of kernel launched with triple-chevron syntax
Total number of threads, divided into

Number of blocks on the grid (gridDim)
Number of threads per block (blockDim)

Call returns immediately; kernel launch is asynchronous!

Example:
int nThreads = 32;
scale<<<N/nThreads, nThreads>>>(23, in, out, N)
Possibility for toomany threads; include termination condition into kernel!

×

Member of the Helmholtz Association 20 January 2023 Slide 31 74

Kernel Launch

kernel<<<int gridDim, int blockDim>>>(...)

Parallel threads of kernel launched with triple-chevron syntax
Total number of threads, divided into

Number of blocks on the grid (gridDim)
Number of threads per block (blockDim)

Call returns immediately; kernel launch is asynchronous!
Example:
int nThreads = 32;
scale<<<N/nThreads, nThreads>>>(23, in, out, N)

Possibility for toomany threads; include termination condition into kernel!

×

Member of the Helmholtz Association 20 January 2023 Slide 31 74

Kernel Launch

kernel<<<int gridDim, int blockDim>>>(...)

Parallel threads of kernel launched with triple-chevron syntax
Total number of threads, divided into

Number of blocks on the grid (gridDim)
Number of threads per block (blockDim)

Call returns immediately; kernel launch is asynchronous!
Example:
int nThreads = 32;
scale<<<N/nThreads, nThreads>>>(23, in, out, N)
Possibility for toomany threads; include termination condition into kernel!

×

Member of the Helmholtz Association 20 January 2023 Slide 31 74

Full Kernel Launch
For Reference

kernel<<<dim3 gD, dim3 bD, size_t shared, cudaStream_t stream>>>(...)

2 additional, optional parameters

shared Dynamic sharedmemory
Small GPUmemory space; share data in block (high bandwidth)
Sharedmemory: allocate statically (compile time) or dynamically (run time)
size_t shared: bytes of sharedmemory allocated per block (in addition to
static sharedmemory)

stream Associated CUDA stream
CUDA streams enable different channels of communication with GPU
Can overlap in some cases (communication, computation)
cudaStream_t stream: ID of stream to use for this kernel launch

Member of the Helmholtz Association 20 January 2023 Slide 32 74

Full Kernel Launch
For Reference

kernel<<<dim3 gD, dim3 bD, size_t shared, cudaStream_t stream>>>(...)

2 additional, optional parameters

shared Dynamic sharedmemory
Small GPUmemory space; share data in block (high bandwidth)
Sharedmemory: allocate statically (compile time) or dynamically (run time)
size_t shared: bytes of sharedmemory allocated per block (in addition to
static sharedmemory)

stream Associated CUDA stream
CUDA streams enable different channels of communication with GPU
Can overlap in some cases (communication, computation)
cudaStream_t stream: ID of stream to use for this kernel launch

Member of the Helmholtz Association 20 January 2023 Slide 32 74

Full Kernel Launch
For Reference

kernel<<<dim3 gD, dim3 bD, size_t shared, cudaStream_t stream>>>(...)

2 additional, optional parameters

shared Dynamic sharedmemory
Small GPUmemory space; share data in block (high bandwidth)
Sharedmemory: allocate statically (compile time) or dynamically (run time)
size_t shared: bytes of sharedmemory allocated per block (in addition to
static sharedmemory)

stream Associated CUDA stream
CUDA streams enable different channels of communication with GPU
Can overlap in some cases (communication, computation)
cudaStream_t stream: ID of stream to use for this kernel launch

Member of the Helmholtz Association 20 January 2023 Slide 32 74

Grid Dimensions 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2
Threads & blocks in 3D3D3D3D

Create 3D configurations with struct dim3

dim3 blockOrGridDim(size_t dimX, size_t dimY, size_t dimZ)

Example:
dim3 blockDim(32, 32);
dim3 gridDim = {1000, 100};
Kernel call with dim3
kernel<<<dim3 gridDim, dim3 blockDim>>>(...)

Member of the Helmholtz Association 20 January 2023 Slide 33 74

Grid Dimensions 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2
Threads & blocks in 3D3D3D3D
Create 3D configurations with struct dim3

dim3 blockOrGridDim(size_t dimX, size_t dimY, size_t dimZ)

Example:
dim3 blockDim(32, 32);
dim3 gridDim = {1000, 100};
Kernel call with dim3
kernel<<<dim3 gridDim, dim3 blockDim>>>(...)

Member of the Helmholtz Association 20 January 2023 Slide 33 74

Grid Dimensions 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2
Threads & blocks in 3D3D3D3D
Create 3D configurations with struct dim3

dim3 blockOrGridDim(size_t dimX, size_t dimY, size_t dimZ)

Example:
dim3 blockDim(32, 32);
dim3 gridDim = {1000, 100};

Kernel call with dim3
kernel<<<dim3 gridDim, dim3 blockDim>>>(...)

Member of the Helmholtz Association 20 January 2023 Slide 33 74

Grid Dimensions 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2
Threads & blocks in 3D3D3D3D
Create 3D configurations with struct dim3

dim3 blockOrGridDim(size_t dimX, size_t dimY, size_t dimZ)

Example:
dim3 blockDim(32, 32);
dim3 gridDim = {1000, 100};
Kernel call with dim3
kernel<<<dim3 gridDim, dim3 blockDim>>>(...)

Member of the Helmholtz Association 20 January 2023 Slide 33 74

Grid Sizes
Block and grid sizes are hardware-dependent

For JSC GPUs: Tesla V100, A100
Block N⃗Thread ≤ (1024x, 1024y, 64z)

|N⃗Thread| = NThread ≤ 1024

Grid N⃗Blocks ≤ (2147483647x, 65535y, 65535z) = (231, 216, 216)− 1⃗

Find out yourself: deviceQuery example from CUDA Samples
Workflow: Chose 128 or 256 as block dim; calculate grid dim from problem size
int Nx = 1000, Ny = 1000;
dim3 blockDim(16, 16);
int gx = (Nx % blockDim.x == 0) Nx / blockDim.x : Nx / blockDim.x + 1;
int gy = (Ny % blockDim.y == 0) Ny / blockDim.y : Ny / blockDim.y + 1;
dim3 gridDim(gx, gy);
kernel<<<gridDim, blockDim>>>();

Member of the Helmholtz Association 20 January 2023 Slide 34 74

Grid Sizes
Block and grid sizes are hardware-dependent
For JSC GPUs: Tesla V100, A100
Block N⃗Thread ≤ (1024x, 1024y, 64z)

|N⃗Thread| = NThread ≤ 1024

Grid N⃗Blocks ≤ (2147483647x, 65535y, 65535z) = (231, 216, 216)− 1⃗

Find out yourself: deviceQuery example from CUDA Samples
Workflow: Chose 128 or 256 as block dim; calculate grid dim from problem size
int Nx = 1000, Ny = 1000;
dim3 blockDim(16, 16);
int gx = (Nx % blockDim.x == 0) Nx / blockDim.x : Nx / blockDim.x + 1;
int gy = (Ny % blockDim.y == 0) Ny / blockDim.y : Ny / blockDim.y + 1;
dim3 gridDim(gx, gy);
kernel<<<gridDim, blockDim>>>();

Member of the Helmholtz Association 20 January 2023 Slide 34 74

Grid Sizes
Block and grid sizes are hardware-dependent
For JSC GPUs: Tesla V100, A100
Block N⃗Thread ≤ (1024x, 1024y, 64z)

|N⃗Thread| = NThread ≤ 1024
Grid N⃗Blocks ≤ (2147483647x, 65535y, 65535z) = (231, 216, 216)− 1⃗

Find out yourself: deviceQuery example from CUDA Samples
Workflow: Chose 128 or 256 as block dim; calculate grid dim from problem size
int Nx = 1000, Ny = 1000;
dim3 blockDim(16, 16);
int gx = (Nx % blockDim.x == 0) Nx / blockDim.x : Nx / blockDim.x + 1;
int gy = (Ny % blockDim.y == 0) Ny / blockDim.y : Ny / blockDim.y + 1;
dim3 gridDim(gx, gy);
kernel<<<gridDim, blockDim>>>();

Member of the Helmholtz Association 20 January 2023 Slide 34 74

Grid Sizes
Block and grid sizes are hardware-dependent
For JSC GPUs: Tesla V100, A100
Block N⃗Thread ≤ (1024x, 1024y, 64z)

|N⃗Thread| = NThread ≤ 1024
Grid N⃗Blocks ≤ (2147483647x, 65535y, 65535z) = (231, 216, 216)− 1⃗

Find out yourself: deviceQuery example from CUDA Samples

Workflow: Chose 128 or 256 as block dim; calculate grid dim from problem size
int Nx = 1000, Ny = 1000;
dim3 blockDim(16, 16);
int gx = (Nx % blockDim.x == 0) Nx / blockDim.x : Nx / blockDim.x + 1;
int gy = (Ny % blockDim.y == 0) Ny / blockDim.y : Ny / blockDim.y + 1;
dim3 gridDim(gx, gy);
kernel<<<gridDim, blockDim>>>();

Member of the Helmholtz Association 20 January 2023 Slide 34 74

Grid Sizes
Block and grid sizes are hardware-dependent
For JSC GPUs: Tesla V100, A100
Block N⃗Thread ≤ (1024x, 1024y, 64z)

|N⃗Thread| = NThread ≤ 1024
Grid N⃗Blocks ≤ (2147483647x, 65535y, 65535z) = (231, 216, 216)− 1⃗

Find out yourself: deviceQuery example from CUDA Samples
Workflow: Chose 128 or 256 as block dim; calculate grid dim from problem size
int Nx = 1000, Ny = 1000;
dim3 blockDim(16, 16);
int gx = (Nx % blockDim.x == 0) Nx / blockDim.x : Nx / blockDim.x + 1;
int gy = (Ny % blockDim.y == 0) Ny / blockDim.y : Ny / blockDim.y + 1;
dim3 gridDim(gx, gy);
kernel<<<gridDim, blockDim>>>();

Member of the Helmholtz Association 20 January 2023 Slide 34 74

Hardware Threads
Mapping Software Threads to Hardware

Thread

CUDA Core

Thread Block

Multiprocessor (SM)

Grid

GPU Device

Member of the Helmholtz Association 20 January 2023 Slide 35 74

Memory Management
With Automated Transfers

Allocate memory to be used on GPU or CPU

cudaMallocManaged(T** ptr, size_t nBytes)

Data is copied to GPU or to CPU automatically (managed)

Example:
float * a;
int N = 2048;
cudaMallocManaged(&a, N * sizeof(float));

Free device memory

cudaFree(void* ptr)

Member of the Helmholtz Association 20 January 2023 Slide 36 74

Memory Management
With Automated Transfers

Allocate memory to be used on GPU or CPU

cudaMallocManaged(T** ptr, size_t nBytes)

Data is copied to GPU or to CPU automatically (managed)
Example:
float * a;
int N = 2048;
cudaMallocManaged(&a, N * sizeof(float));

Free device memory

cudaFree(void* ptr)

Member of the Helmholtz Association 20 January 2023 Slide 36 74

Memory Management
With Automated Transfers

Allocate memory to be used on GPU or CPU

cudaMallocManaged(T** ptr, size_t nBytes)

Data is copied to GPU or to CPU automatically (managed)
Example:
float * a;
int N = 2048;
cudaMallocManaged(&a, N * sizeof(float));

Free device memory

cudaFree(void* ptr)

Member of the Helmholtz Association 20 January 2023 Slide 36 74

Memory Management
With Manual Transfers

Allocate memory to be used on GPU

cudaMalloc(T** ptr, size_t nBytes)

Copy data between host↔ device

cudaMemcpy(void* dst, void* src, size_t nByte, enum cudaMemcpyKind dir)

Example:
float * a, * a_d;
int N = 2048;
// fill a
cudaMalloc(&a_d, N * sizeof(float));
cudaMemcpy(a_d, a, N * sizeof(float), cudaMemcpyHostToDevice);
kernel<<<1,1>>>(a_d, N);
cudaMemcpy(a , a_d, N * sizeof(float), cudaMemcpyDeviceToHost);

Member of the Helmholtz Association 20 January 2023 Slide 37 74

Memory Management
With Manual Transfers

Allocate memory to be used on GPU

cudaMalloc(T** ptr, size_t nBytes)

Copy data between host↔ device

cudaMemcpy(void* dst, void* src, size_t nByte, enum cudaMemcpyKind dir)

Example:
float * a, * a_d;
int N = 2048;
// fill a
cudaMalloc(&a_d, N * sizeof(float));
cudaMemcpy(a_d, a, N * sizeof(float), cudaMemcpyHostToDevice);
kernel<<<1,1>>>(a_d, N);
cudaMemcpy(a , a_d, N * sizeof(float), cudaMemcpyDeviceToHost);

Member of the Helmholtz Association 20 January 2023 Slide 37 74

Memory Management
With Manual Transfers

Allocate memory to be used on GPU

cudaMalloc(T** ptr, size_t nBytes)

Copy data between host↔ device

cudaMemcpy(void* dst, void* src, size_t nByte, enum cudaMemcpyKind dir)

Example:
float * a, * a_d;
int N = 2048;
// fill a
cudaMalloc(&a_d, N * sizeof(float));
cudaMemcpy(a_d, a, N * sizeof(float), cudaMemcpyHostToDevice);
kernel<<<1,1>>>(a_d, N);
cudaMemcpy(a , a_d, N * sizeof(float), cudaMemcpyDeviceToHost);

Member of the Helmholtz Association 20 January 2023 Slide 37 74

Unified Memory
Overview

Everything started with manual data management
First Unified Memory since CUDA 6.0
Better Unified Memory better since CUDA 8.0
Now: Unified Memory great default, explicit memory only a possible optimization

Member of the Helmholtz Association 20 January 2023 Slide 38 74

Manual Memory vs. Unified Memory

void sortfile(FILE *fp, int N) {
char *data;
char *data_d;

data = (char *)malloc(N);
cudaMalloc(&data_d, N);

fread(data, 1, N, fp);

cudaMemcpy(data_d, data, N, cudaMemcpyHostToDevice);
kernel<<<...>>>(data, N);

cudaMemcpy(data, data_d, N, cudaMemcpyDeviceToHost);
host_func(data)
cudaFree(data_d); free(data);

}

void sortfile(FILE *fp, int N) {
char *data;

cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

host_func(data);
cudaFree(data);

}

Member of the Helmholtz Association 20 January 2023 Slide 39 74

Implementation Details
Under the hood

cudaMallocManaged(&ptr, ...);

*ptr = 1;

kernel<<<...>>>(ptr);

Pages populate on first touch
Pages migrate on-demand
GPUmemory over-subscription possible
Concurrent access from CPU and GPU tomemory (page-level)

Member of the Helmholtz Association 20 January 2023 Slide 40 74

Implementation Details
Under the hood

cudaMallocManaged(&ptr, ...);

*ptr = 1;

kernel<<<...>>>(ptr);

Empty! No pages anywhere yet (like malloc())

Pages populate on first touch
Pages migrate on-demand
GPUmemory over-subscription possible
Concurrent access from CPU and GPU tomemory (page-level)

Member of the Helmholtz Association 20 January 2023 Slide 40 74

Implementation Details
Under the hood

cudaMallocManaged(&ptr, ...);

*ptr = 1;

kernel<<<...>>>(ptr);

Empty! No pages anywhere yet (like malloc())

CPU page fault: data allocates on CPU

Pages populate on first touch
Pages migrate on-demand
GPUmemory over-subscription possible
Concurrent access from CPU and GPU tomemory (page-level)

Member of the Helmholtz Association 20 January 2023 Slide 40 74

Implementation Details
Under the hood

cudaMallocManaged(&ptr, ...);

*ptr = 1;

kernel<<<...>>>(ptr);

Empty! No pages anywhere yet (like malloc())

CPU page fault: data allocates on CPU

GPU page fault: data migrates to GPU

Pages populate on first touch
Pages migrate on-demand
GPUmemory over-subscription possible
Concurrent access from CPU and GPU tomemory (page-level)

Member of the Helmholtz Association 20 January 2023 Slide 40 74

Implementation Details
Under the hood

cudaMallocManaged(&ptr, ...);

*ptr = 1;

kernel<<<...>>>(ptr);

Empty! No pages anywhere yet (like malloc())

CPU page fault: data allocates on CPU

GPU page fault: data migrates to GPU

Pages populate on first touch
Pages migrate on-demand
GPUmemory over-subscription possible
Concurrent access from CPU and GPU tomemory (page-level)

Member of the Helmholtz Association 20 January 2023 Slide 40 74

Performance Analysis
Comparing scale_vector_um (Unified Memory) and scale_vector (manual copy) for
20 480 float elements.

Time(%) Total Time (ns) Name
------- --------------- ---------------------------------
100.0 463,286 scale(float, float*, float*, int)

Time(%) Total Time (ns) Name
------- --------------- ---------------------------------
100.0 4,792 scale(float, float*, float*, int)

U
M

M
an

ua
l

Member of the Helmholtz Association 20 January 2023 Slide 41 74

Performance Analysis
Comparing scale_vector_um (Unified Memory) and scale_vector (manual copy) for
20 480 float elements.

Time(%) Total Time (ns) Name
------- --------------- ---------------------------------
100.0 463,286 scale(float, float*, float*, int)

Time(%) Total Time (ns) Name
------- --------------- ---------------------------------
100.0 4,792 scale(float, float*, float*, int)

U
M

M
an

ua
l

100× slower?!
What’s going wrong here?

Member of the Helmholtz Association 20 January 2023 Slide 41 74

Performance Analysis
Comparing scale_vector_um (Unified Memory) and scale_vector (manual copy) for
20 480 float elements.

Time(%) Total Time (ns) Name
------- --------------- ---------------------------------
100.0 463,286 scale(float, float*, float*, int)

Time(%) Total Time (ns) Name
------- --------------- ---------------------------------
100.0 4,792 scale(float, float*, float*, int)

U
M

M
an

ua
l

Member of the Helmholtz Association 20 January 2023 Slide 41 74

Performance Analysis
Comparing scale_vector_um (Unified Memory) and scale_vector (manual copy) for
20 480 float elements.

Time(%) Total Time (ns) Name
------- --------------- ---------------------------------
100.0 463,286 scale(float, float*, float*, int)

Time(%) Total Time (ns) Name
------- --------------- ---------------------------------
100.0 4,792 scale(float, float*, float*, int)

U
M

M
an

ua
l

Member of the Helmholtz Association 20 January 2023 Slide 41 74

Comparing UM and Explicit Transfers

UM Kernel is launched, data is needed by kernel, data migrates host→device
⇒ Run time of kernel incorporates time for data transfers

Explicit Data will be needed by kernel – data migrates host→device before kernel launch
⇒ Run time of kernelwithout any transfers

UMmore convenient
Total run time of whole program does not principally change
Except: Fault handling costsO (10µs), stalls execution
But data transfers sometimes sorted to kernel launch

⇒ Improve UM behavior with performance hints!

Member of the Helmholtz Association 20 January 2023 Slide 42 74

Comparing UM and Explicit Transfers

UM Kernel is launched, data is needed by kernel, data migrates host→device
⇒ Run time of kernel incorporates time for data transfers

Explicit Data will be needed by kernel – data migrates host→device before kernel launch
⇒ Run time of kernelwithout any transfers

UMmore convenient
Total run time of whole program does not principally change
Except: Fault handling costsO (10µs), stalls execution
But data transfers sometimes sorted to kernel launch

⇒ Improve UM behavior with performance hints!

Member of the Helmholtz Association 20 January 2023 Slide 42 74

Comparing UM and Explicit Transfers

UM Kernel is launched, data is needed by kernel, data migrates host→device
⇒ Run time of kernel incorporates time for data transfers

Explicit Data will be needed by kernel – data migrates host→device before kernel launch
⇒ Run time of kernelwithout any transfers

UMmore convenient
Total run time of whole program does not principally change
Except: Fault handling costsO (10µs), stalls execution
But data transfers sometimes sorted to kernel launch

⇒ Improve UM behavior with performance hints!

Member of the Helmholtz Association 20 January 2023 Slide 42 74

Performance Hints for UM
New API routines

API calls to augment data location knowledge of runtime
cudaMemPrefetchAsync(data, length, device, stream)
Prefetches data to device (on stream) asynchronously

cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:

cudaMemAdviseSetReadMostly: Read-only copy is kept
cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first
access will establish mapping
cudaMemAdviseSetAccessedBy: Data is accessed by this device; will pre-map data to
avoid page fault

Use cudaCpuDeviceId for device CPU, or use cudaGetDevice() as usual to retrieve
current GPU device id (default: 0)

Member of the Helmholtz Association 20 January 2023 Slide 43 74

Performance Hints for UM
New API routines

API calls to augment data location knowledge of runtime
cudaMemPrefetchAsync(data, length, device, stream)
Prefetches data to device (on stream) asynchronously
cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:

cudaMemAdviseSetReadMostly: Read-only copy is kept
cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first
access will establish mapping
cudaMemAdviseSetAccessedBy: Data is accessed by this device; will pre-map data to
avoid page fault

Use cudaCpuDeviceId for device CPU, or use cudaGetDevice() as usual to retrieve
current GPU device id (default: 0)

Member of the Helmholtz Association 20 January 2023 Slide 43 74

Performance Hints for UM
New API routines

API calls to augment data location knowledge of runtime
cudaMemPrefetchAsync(data, length, device, stream)
Prefetches data to device (on stream) asynchronously
cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:

cudaMemAdviseSetReadMostly: Read-only copy is kept

cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first
access will establish mapping
cudaMemAdviseSetAccessedBy: Data is accessed by this device; will pre-map data to
avoid page fault

Use cudaCpuDeviceId for device CPU, or use cudaGetDevice() as usual to retrieve
current GPU device id (default: 0)

Member of the Helmholtz Association 20 January 2023 Slide 43 74

Performance Hints for UM
New API routines

API calls to augment data location knowledge of runtime
cudaMemPrefetchAsync(data, length, device, stream)
Prefetches data to device (on stream) asynchronously
cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:

cudaMemAdviseSetReadMostly: Read-only copy is kept
cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first
access will establish mapping

cudaMemAdviseSetAccessedBy: Data is accessed by this device; will pre-map data to
avoid page fault

Use cudaCpuDeviceId for device CPU, or use cudaGetDevice() as usual to retrieve
current GPU device id (default: 0)

Member of the Helmholtz Association 20 January 2023 Slide 43 74

Performance Hints for UM
New API routines

API calls to augment data location knowledge of runtime
cudaMemPrefetchAsync(data, length, device, stream)
Prefetches data to device (on stream) asynchronously
cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:

cudaMemAdviseSetReadMostly: Read-only copy is kept
cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first
access will establish mapping
cudaMemAdviseSetAccessedBy: Data is accessed by this device; will pre-map data to
avoid page fault

Use cudaCpuDeviceId for device CPU, or use cudaGetDevice() as usual to retrieve
current GPU device id (default: 0)

Member of the Helmholtz Association 20 January 2023 Slide 43 74

Performance Hints for UM
New API routines

API calls to augment data location knowledge of runtime
cudaMemPrefetchAsync(data, length, device, stream)
Prefetches data to device (on stream) asynchronously
cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:

cudaMemAdviseSetReadMostly: Read-only copy is kept
cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first
access will establish mapping
cudaMemAdviseSetAccessedBy: Data is accessed by this device; will pre-map data to
avoid page fault

Use cudaCpuDeviceId for device CPU, or use cudaGetDevice() as usual to retrieve
current GPU device id (default: 0)

Member of the Helmholtz Association 20 January 2023 Slide 43 74

Hints in Code

void sortfile(FILE *fp, int N) {
char *data;
// ...
cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

cudaMemPrefetchAsync(data, N, device);
kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

host_func(data);
cudaFree(data); }

Member of the Helmholtz Association 20 January 2023 Slide 44 74

Hints in Code

void sortfile(FILE *fp, int N) {
char *data;
// ...
cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

cudaMemPrefetchAsync(data, N, device);
kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

host_func(data);
cudaFree(data); }

Prefetch data to avoid ex-
pensive GPU page faults

Member of the Helmholtz Association 20 January 2023 Slide 44 74

Hints in Code

void sortfile(FILE *fp, int N) {
char *data;
// ...
cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

cudaMemAdvise(data, N, cudaMemAdviseSetReadMostly, device);
cudaMemPrefetchAsync(data, N, device);
kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

host_func(data);
cudaFree(data); }

Prefetch data to avoid ex-
pensive GPU page faults

Read-only copy of data
is created on GPU during
prefetch
→ CPU and GPU reads will
not fault

Member of the Helmholtz Association 20 January 2023 Slide 44 74

Programming GPUs
Performance Analysis

GPU Tools
The helpful helpers helping helpless (and others)

NVIDIA
cuda-gdb GDB-like command line utility for debugging

compute-sanitizer Check memory accesses, race conditions, …
Nsight IDE for GPU developing, based on Eclipse (Linux, OS X) or Visual Studio

(Windows) or VScode
Nsight Systems GPU program profiler with timeline
Nsight Compute GPU kernel profiler
AMD
rocProf Profiler for AMD’s ROCm stack
uProf Analyzer for AMD’s CPUs and GPUs

Member of the Helmholtz Association 20 January 2023 Slide 46 74

Nsight Systems
CLI

$ nsys profile --stats=true ./poisson2d 10 # (shortened)

CUDA API Statistics:

Time(%) Total Time (ns) Num Calls Average Minimum Maximum Name
------- --------------- --------- ------------ ---------- ---------- --------------------

90.9 160,407,572 30 5,346,919.1 1,780 25,648,117 cuStreamSynchronize

CUDA Kernel Statistics:

Time(%) Total Time (ns) Instances Average Minimum Maximum Name
------- --------------- --------- ------------ ---------- ---------- -----------------
100.0 158,686,617 10 15,868,661.7 14,525,819 25,652,783 main_106_gpu

0.0 25,120 10 2,512.0 2,304 3,680 main_106_gpu__red

Member of the Helmholtz Association 20 January 2023 Slide 47 74

Nsight Systems
GUI

Member of the Helmholtz Association 20 January 2023 Slide 48 74

Nsight Compute
GUI

Programming GPUs
Beyond CUDA

Programming GPUs
Beyond CUDA: Cooperative Groups

NewModel: Cooperative Groups

Motivation to extend classical model
Algorithmic Not all algorithmsmap easily to available synchronization methods;

synchronization should bemore flexible
Design Make groups of threads explicit entities

Hardware Access new hardware features (Independent Thread Scheduling, Thread
Block Clusters)

→ Cooperative Groups (CG)
A flexible model for synchronization and communication within groups of threads.

All in namespace cooperative_groups (cooperative_groups.h header)
Following in text: cooperative_groups::func()−→ cg::func()
namespace cg = cooperative_groups;

Member of the Helmholtz Association 20 January 2023 Slide 52 74

NewModel: Cooperative Groups

Motivation to extend classical model
Algorithmic Not all algorithmsmap easily to available synchronization methods;

synchronization should bemore flexible
Design Make groups of threads explicit entities

Hardware Access new hardware features (Independent Thread Scheduling, Thread
Block Clusters)

→ Cooperative Groups (CG)
A flexible model for synchronization and communication within groups of threads.

All in namespace cooperative_groups (cooperative_groups.h header)
Following in text: cooperative_groups::func()−→ cg::func()
namespace cg = cooperative_groups;

Member of the Helmholtz Association 20 January 2023 Slide 52 74

Thread Group Landscape

Thread Group

Thread Block

Thread Block
Tile Coalesced Group

Grid Group

Multi-Grid Group

Thread Block Cluster

Member of the Helmholtz Association 20 January 2023 Slide 53 74

Thread Group Landscape

Thread Group

Thread Block

Thread Block
Tile Coalesced Group

Grid Group

Multi-Grid Group

Thread Block Cluster

Member of the Helmholtz Association 20 January 2023 Slide 53 74

Thread Group Landscape

Thread Group

Thread Block

Thread Block
Tile Coalesced Group

Grid Group

Multi-Grid Group

Thread Block Cluster

Member of the Helmholtz Association 20 January 2023 Slide 53 74

Thread Group Landscape

Thread Group

Thread Block

Thread Block
Tile Coalesced Group

Grid Group

Multi-Grid Group

Thread Block Cluster

Member of the Helmholtz Association 20 January 2023 Slide 53 74

Thread Group Landscape

Thread Group

Thread Block

Thread Block
Tile Coalesced Group

Grid Group

Multi-Grid Group

Thread Block Cluster

Member of the Helmholtz Association 20 January 2023 Slide 53 74

CommonMethods of Cooperative Groups

Fundamental type: thread_group
Every CG has following member functions

sync() Synchronize the threads of this group (alternative cg::sync(g))
Before: __syncthreads() for whole block

thread_rank() Get unique ID of current thread in this group (local index)
Before: threadIdx.x for index in block

size() Number of threads in this group
Before: blockDim.x for number of threads in block

is_valid() Group is technically ok

Member of the Helmholtz Association 20 January 2023 Slide 54 74

Simple Example: Print Rank

__device__ void printRank(cg::thread_group g) {
printf("Rank %d\n", g.thread_rank());

}
__global__ void allPrint() {

cg::thread_block b = cg::this_thread_block();

printRank(b);
}
int main() {

allPrint<<<1, 23>>();
}

Member of the Helmholtz Association 20 January 2023 Slide 55 74

Advanced Example: Cooperative Reduce Collective

__shared__ int reduction_s[BLOCKSIZE];
cg::thread_block cta = cg::this_thread_block();
cg::thread_block_tile<32> tile = cg::tiled_partition<32>(cta);

const int tid = cta.thread_rank();
int value = A[tid];
reduction_s[tid] = cg::reduce(tile, value, cg::plus<int>());
// reduction_s contains tile-sum at all positions associated to tile
cg::sync(cta);
// Still to do: sum partial tile sums

Member of the Helmholtz Association 20 January 2023 Slide 56 74

Programming GPUs
Beyond CUDA:MPI

Distributed Computing with MPI

Modern compute nodes: multiple GPUs per node

HPC: multiple nodes
Technology for distribution: MPI
MPI also for multi-GPU computing!

Important: Direct GPU-to-GPUmemory transfers,
no intermediate transfer to CPU
Modern MPIs can be GPU-aware and do the right thing

Member of the Helmholtz Association 20 January 2023 Slide 58 74

Distributed Computing with MPI

Modern compute nodes: multiple GPUs per node

HPC: multiple nodes
Technology for distribution: MPI
MPI also for multi-GPU computing!

Important: Direct GPU-to-GPUmemory transfers,
no intermediate transfer to CPU
Modern MPIs can be GPU-aware and do the right thing

Member of the Helmholtz Association 20 January 2023 Slide 58 74

Distributed Computing with MPI

Modern compute nodes: multiple GPUs per node
HPC: multiple nodes

Technology for distribution: MPI
MPI also for multi-GPU computing!

Important: Direct GPU-to-GPUmemory transfers,
no intermediate transfer to CPU
Modern MPIs can be GPU-aware and do the right thing

Member of the Helmholtz Association 20 January 2023 Slide 58 74

Distributed Computing with MPI

Modern compute nodes: multiple GPUs per node
HPC: multiple nodes

Technology for distribution: MPI
MPI also for multi-GPU computing!

Important: Direct GPU-to-GPUmemory transfers,
no intermediate transfer to CPU
Modern MPIs can be GPU-aware and do the right thing

Member of the Helmholtz Association 20 January 2023 Slide 58 74

Distributed Computing with MPI

Modern compute nodes: multiple GPUs per node
HPC: multiple nodes
Technology for distribution: MPI
MPI also for multi-GPU computing!

Important: Direct GPU-to-GPUmemory transfers,
no intermediate transfer to CPU
Modern MPIs can be GPU-aware and do the right thing

Member of the Helmholtz Association 20 January 2023 Slide 58 74

Distributed Computing with MPI

Modern compute nodes: multiple GPUs per node
HPC: multiple nodes
Technology for distribution: MPI
MPI also for multi-GPU computing!

Important: Direct GPU-to-GPUmemory transfers,
no intermediate transfer to CPU

Modern MPIs can be GPU-aware and do the right thing

Member of the Helmholtz Association 20 January 2023 Slide 58 74

Distributed Computing with MPI

Modern compute nodes: multiple GPUs per node
HPC: multiple nodes
Technology for distribution: MPI
MPI also for multi-GPU computing!

Important: Direct GPU-to-GPUmemory transfers,
no intermediate transfer to CPU

Modern MPIs can be GPU-aware and do the right thing

0

1

2

3

0 1

3 2

×16

Memory

CPU

GPU

PCIe Switch

HCA

25
6

G
B

6

7 5

4

1

20

18 19 20

21 22 23

66 67 68

69 70 71

3

25
6

G
B

×16

×16 ×16

×16

×16

×16

×16

×16 ×16

×16

×16

L1

L1

L1

L1

0

1

2

3

01

32

×16

Memory

CPU

GPU

PCIe Switch

HCA

25
6
G
B

6

75

4

1

2 0

181920

212223

666768

697071

3

25
6
G
B

×16

×16×16

×16

×16

×16

×16

×16×16

×16

×16

L1

L1

L1

L1

JUWELS Booster node topolgy

Member of the Helmholtz Association 20 January 2023 Slide 58 74

Distributed Computing with MPI

Modern compute nodes: multiple GPUs per node
HPC: multiple nodes
Technology for distribution: MPI
MPI also for multi-GPU computing!

Important: Direct GPU-to-GPUmemory transfers,
no intermediate transfer to CPU
Modern MPIs can be GPU-aware and do the right thing

Member of the Helmholtz Association 20 January 2023 Slide 58 74

MPI Sketch (Pseudo-C)

#include <mpi.h>
int main(int argc, char *argv[]) {
int rank,size;

// Init MPI
MPI_Init(&argc, &argv);
// Get current rank ID and total number of ranks */
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
// Call routines
cudaMalloc(&buffer, n*sizeof(double));
computeKernel<<<dim_grid,dim_block>>>(buffer);
MPI_Sendrecv(buffer, n, MPI_REAL_TYPE, top, 0, buffer+n, n, MPI_REAL_TYPE, bottom, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);↪→
// Shutdown
MPI_Finalize();
return 0;

}

Member of the Helmholtz Association 20 January 2023 Slide 59 74

Programming GPUs
Beyond CUDA: Thrust

Thrust
Iterators! Iterators everywhere!

Thrust
CUDA = STL

C++
Template library
A precursor to a GPU-accelerated pSTL?
Based on iterators
Data-parallel primitives (scan(), sort(), reduce(), …)
Fully compatible with plain CUDA C (comes with CUDA Toolkit)
Great with [](){} lambdas!

→ http://thrust.github.io/
http://docs.nvidia.com/cuda/thrust/

Member of the Helmholtz Association 20 January 2023 Slide 61 74

http://thrust.github.io/
http://docs.nvidia.com/cuda/thrust/

Thrust
Code example

int a = 42;
int n = 10;
thrust::host_vector<float> x(n), y(n);
// fill x, y

thrust::device_vector d_x = x, d_y = y;
thrust::transform(d_x.begin(), d_x.end(), d_y.begin(), d_y.begin(), [=]

__device__ (auto x, auto y) {return a*x+y;});↪→

// or:
using namespace thrust::placeholders;
thrust::transform(d_x.begin(), d_x.end(), d_y.begin(), d_y.begin(), a * _1 +

_2);↪→

x = d_x;

Member of the Helmholtz Association 20 January 2023 Slide 62 74

Standard Parallelism

By now, GPUs (and other accelerators) ubiquitous; around for long time
Dedicated, custom parallelism concepts move into standards of languages

C++ Parallel STL since C++17 (2017)
Fortran do concurrent
Both allow for execution on GPU
Programmer identifies, exposes parallel code; compiler generates GPU-capable binary
Compiler: NVHPC best, but also Intel oneDPL and others

Member of the Helmholtz Association 20 January 2023 Slide 63 74

pSTL Standard Parallelism Example

int a = 42;
int n = 10;
std::vector x(N), y(N);
// fill x, y

std::transform(std::execution::par_unseq, x.begin(), x.end(), y.begin(), y.begin(),
[=] (auto x, auto y) {

return a*x+y;
}

);

Member of the Helmholtz Association 20 January 2023 Slide 64 74

Programming GPUs
Beyond CUDA: HIP

Current GPU Leadership Systems Landscape

Current fastest supercomputer: Frontier
at Oak Ridge (USA) with 38 000 AMD
MI250X GPUs – 1.102 EFLOP/s; also most
energy-efficient!

2023: Aurora at Argonne with> 60 000
Intel Ponte Vecchio GPUs –> 2 EFLOP/s
2023: El Capitan at Lawrence Livermore
with AMDMI300 GPUs –> 2 EFLOP/s
2024: JUPITER at JSC –> 1 EFLOP/s!
GPUs, details TBD

Picture by OLCF at ORNL on Flickr

Member of the Helmholtz Association 20 January 2023 Slide 66 74

https://www.flickr.com/photos/olcf/52117623843/

Current GPU Leadership Systems Landscape

Current fastest supercomputer: Frontier
at Oak Ridge (USA) with 38 000 AMD
MI250X GPUs – 1.102 EFLOP/s; also most
energy-efficient!
2023: Aurora at Argonne with> 60 000
Intel Ponte Vecchio GPUs –> 2 EFLOP/s
2023: El Capitan at Lawrence Livermore
with AMDMI300 GPUs –> 2 EFLOP/s

2024: JUPITER at JSC –> 1 EFLOP/s!
GPUs, details TBD

Picture by OLCF at ORNL on Flickr

Member of the Helmholtz Association 20 January 2023 Slide 66 74

https://www.flickr.com/photos/olcf/52117623843/

Current GPU Leadership Systems Landscape

Current fastest supercomputer: Frontier
at Oak Ridge (USA) with 38 000 AMD
MI250X GPUs – 1.102 EFLOP/s; also most
energy-efficient!
2023: Aurora at Argonne with> 60 000
Intel Ponte Vecchio GPUs –> 2 EFLOP/s
2023: El Capitan at Lawrence Livermore
with AMDMI300 GPUs –> 2 EFLOP/s
2024: JUPITER at JSC –> 1 EFLOP/s!
GPUs, details TBD

Picture by OLCF at ORNL on Flickr

Member of the Helmholtz Association 20 January 2023 Slide 66 74

https://www.flickr.com/photos/olcf/52117623843/

Current GPU Leadership Systems Landscape

Current fastest supercomputer: Frontier
at Oak Ridge (USA) with 38 000 AMD
MI250X GPUs – 1.102 EFLOP/s; also most
energy-efficient!
2023: Aurora at Argonne with> 60 000
Intel Ponte Vecchio GPUs –> 2 EFLOP/s
2023: El Capitan at Lawrence Livermore
with AMDMI300 GPUs –> 2 EFLOP/s
2024: JUPITER at JSC –> 1 EFLOP/s!
GPUs, details TBD

Picture by OLCF at ORNL on Flickr

Member of the Helmholtz Association 20 January 2023 Slide 66 74

https://www.flickr.com/photos/olcf/52117623843/

AMD GPUs: HIP

HIP: AMD’s framework to utilize HPC GPUs
Heterogeneous Interface for Portability
Similar to CUDA, very similar sed -i 's/cuda/hip/'

Can be compiled to run on NVIDIA GPUs (with CUDA) or AMD GPUs (ROCm)
Includes C++ runtime API, kernel language; CUDA conversion tools
Open Source
Very similar performance on NVIDIA GPUs like CUDA

HIP_PLATFORM=amd hipcc --offload-arch=gfx90a -std=c++14 -o daxpy daxpy.cpp

Member of the Helmholtz Association 20 January 2023 Slide 67 74

HIP SAXPY
#include <cuda.h>
__global__ void saxpy_cuda(int n, float a, float * x, float * y) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Member of the Helmholtz Association 20 January 2023 Slide 68 74

HIP SAXPY
#include "hip/hip_runtime.h"
__global__ void saxpy_hip (int n, float a, float * x, float * y) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
hipMallocManaged(&x, n * sizeof(float));
hipMallocManaged(&y, n * sizeof(float));

saxpy_hip <<<2, 5>>>(n, a, x, y);

hipDeviceSynchronize();

Member of the Helmholtz Association 20 January 2023 Slide 68 74

Programming GPUs
Beyond CUDA: SYCL

SYCL / DPC++
oneAPI: Intel’s framework to utilize HPC GPUs and other parallel processors
Large, open-source-ish ecosystem

oneAPI: Umbrella name for programmingmodels and libraries, open; also a ”specification”
DPC++: Data-Parallel C++; language built on C++ to target parallel devices, implements SYCL
and prototypes extensions
SYCL: C++17-basedmodel to target parallel devices, by Khronos group, open
Intel oneAPI DPC++/C++ Compiler: New LLVM-based Intel compiler to compile DPC++
oneMKL, oneDNN,…: Specific libraries for domains, some open
oneAPI DPC++ Library (oneDPL): DPC++-accompanying library with algorithms etc.

Programming with iterators, lambdas, queues, views
Since OSS: Not only for Intel GPUs but also AMD, NVIDIA backends
Higher Level: Might even give better performance then legacy CUDA

→ github.com/oneapi-src

Member of the Helmholtz Association 20 January 2023 Slide 70 74

https://github.com/oneapi-src

DPC++ Example

int a = 42;
int n = 10;
std::vector x(N), y(N);
// fill x, y
{
sycl::queue q(sycl::gpu_selector{});
sycl::buffer<float, 1> d_x { x.data(), sycl::range<1>(x.size())}, d_y...;
q.submit([&] (sycl::handler& h) {

auto x_access = d_x.get_access<sycl::access::mode::read> (h);
auto y_access = d_y.get_access<sycl::access::mode::read_write> (h);
h.parallel_for<class axpy>(sycl::range<1>{length}, [=] (sycl::id<1> it) {

auto i = it.get_id(0);
y_access[i] += a * x_access[i] + y_access[i];

});
});
}

Ad
ap

te
d
fro

m
gi
th
ub

.c
om
/j
ef

fh
am
mo

nd
/d

pc
pp

-t
ut

or
ia

l

Member of the Helmholtz Association 20 January 2023 Slide 71 74

https://github.com/jeffhammond/dpcpp-tutorial/blob/master/saxpy.cc

Programming GPUs
Beyond CUDA:MOREMODELS!!1

State-of-the-Art GPU Programming Models

GPU programming not only programming with CUDA anymore
Muchmore, and CUDA only one solution
New GPU vendors in the game now hungry for a piece of the cake
Manymodels, most offer translation from CUDA

Full vendor support
Indirect, but comprehensive support, by vendor
Vendor support, but not (yet) entirely comprehensive

Comprehensive support, but not by vendor

Limited, probably indirect support – but at least some
No direct support available, but of course one could ISO-C-

bind your way through it or directly link the libraries
C++ C++ (sometimes also C)
Fortran Fortran

CUDA HIP SYCL OpenACC OpenMP Standard Kokkos ALPAKA
C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran Python

NVIDIA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

AMD 18 19 20 4 21 6 22 23 24 24 25 26 27 14 28 16 29

Intel 30 31 32 33 34 6 35 35 36 36 37 38 39 14 40 16 41

• 1: CUDA C/C++ is supported on NVIDIA GPUs through the CUDA Toolkit
• 2: CUDA Fortran, a proprietary Fortran extension, is supported on NVIDIA GPUs via the NVIDIA HPC SDK
• 3: HIP programs can directly use NVIDIA GPUs via a CUDA backend; HIP is maintained by AMD
• 4: No such thing like HIP for Fortran, but AMD offers Fortran interfaces to HIP and ROCm libraries in hipfort
• 5: SYCL can be used on NVIDIA GPUs with experimental support either in SYCL directly or in DPC++, or via hipSYCL
• 6: No such thing like SYCL for Fortran
• 7: OpenACC C/C++ supported on NVIDIA GPUs directly (and best) through NVIDIA HPC SDK; additional, somewhat limited support by GCC C compiler and in LLVM through Clacc
• 8: OpenACC Fortran supported on NVIDIA GPUs directly (and best) through NVIDIA HPC SDK; additional, somewhat limited support by GCC Fortran compiler and Flacc
• 9: OpenMP in C++ supported on NVIDIA GPUs through NVIDIA HPC SDK (albeit with a few limits), by GCC, and Clang; see OpenMP ECP BoF on status in 2022.
• 10: OpenMP in Fortran supported on NVIDIA GPUs through NVIDIA HPC SDK (but not full OpenMP feature set available), by GCC, and Flang
• 11: pSTL features supported on NVIDIA GPUs through NVIDIA HPC SDK
• 12: Standard Language parallel features supported on NVIDIA GPUs through NVIDIA HPC SDK
• 13: Kokkos supports NVIDIA GPUs by calling CUDA as part of the compilation process
• 14: Kokkos is a C++ model, but an official compatibility layer (Fortran Language Compatibility Layer, FLCL) is available.
• 15: Alpaka supports NVIDIA GPUs by calling CUDA as part of the compilation process; also, an OpenMP backend can be used
• 16: Alpaka is a C++ model
• 17: There is a vast community of offloading Python code to NVIDIA GPUs, like CuPy, Numba, cuNumeric, and many others; NVIDIA actively supports a lot of them, but has no direct product

like CUDA for Python; so, the status is somewhere in between
• 18: hipify by AMD can translate CUDA calls to HIP calls which runs natively on AMD GPUs
• 19: AMDoffers a Source-to-Source translator to convert someCUDA Fortran functionality toOpenMP for AMDGPUs (gpufort); in addition, there are ROCm library bindings for Fortran in hipfort

OpenACC/CUDA Fortran Source-to-Source translator
• 20: HIP is the preferred native programmingmodel for AMD GPUs
• 21: SYCL can use AMD GPUs, for example with hipSYCL or DPC++ for HIP AMD
• 22: OpenACC C/C++ can be used on AMD GPUs via GCC or Clacc; also, Intel's OpenACC to OpenMP Source-to-Source translator can be used to generate OpenMP directives from OpenACC

directives
• 23: OpenACC Fortran can be used on AMDGPUs via GCC; also, AMD's gpufort Source-to-Source translator canmoveOpenACC Fortran code to OpenMP Fortran code, and also Intel's translator

can work
• 24: AMD offers a dedicated, Clang-based compiler for using OpenMP on AMD GPUs: AOMP; it supports both C/C++ (Clang) and Fortran (Flang, example)
• 25: Intel's DPC++ (oneAPI) can be compiled with an experimental HIP AMD backend, allowing to launch STL algorithms to AMD GPUs; caveats from Intel's STL support apply
• 26: Currently, no (known) way to launch Standard-based parallel algorithms on AMD GPUs
• 27: Kokkos supports AMD GPUs through HIP
• 28: Alpaka supports AMD GPUs through HIP or through an OpenMP backend
• 29: AMD does not officially support GPU programming with Python (also not semi-officially like NVIDIA), but third-party support is available, for example through Numba (currently inactive)

or a HIP version of CuPy
• 30: SYCLomatic translates CUDA code to SYCL code, allowing it to run on Intel GPUs; also, Intel's DPC++ Compatibility Tool can transform CUDA to SYCL
• 31: No direct support, only via ISO C bindings, but at least an example can be found on GitHub; it's pretty scarce and not by Intel itself, though
• 32: CHIP-SPV supports mapping CUDA and HIP to OpenCL and Intel's Level Zero, making it run on Intel GPUs
• 33: No such thing like HIP for Fortran
• 34: SYCL is the prime programming model for Intel GPUs; actually, SYCL is only a standard, while Intel's implementation of it is called DPC++ (Data Parallel C++), which extends the SYCL

standard in various places; actually actually, Intel namespaces everything oneAPI these days, so the full proper name is Intel oneAPI DPC++ (which incorporates a C++ compiler and also a
library)

• 35: OpenACC can be used on Intel GPUs by translating the code to OpenMP with Intel's Source-to-Source translator
• 36: Intel has extensive support for OpenMP through their latest compilers
• 37: Intel supports pSTL algorithms through their DPC++ Library (oneDPL; GitHub). It's heavily namespaced and not yet on the same level as NVIDIA
• 38: With Intel oneAPI 2022.3, Intel supports DO CONCURRENT with GPU offloading
• 39: Kokkos supports Intel GPUs through SYCL
• 40: Alpaka v0.9.0 introduces experimental SYCL support; also, Alpaka can use OpenMP backends
• 41: Not a lot of support available at the moment, but notably DPNP, a SYCL-based drop-in replacement for Numpy, and numba-dpex, an extension of Numba for DPC++.

1

See appendix for details or doi:10.34732/xdvblg-r1bvif

Member of the Helmholtz Association 20 January 2023 Slide 73 74

https://doi.org/10.34732/xdvblg-r1bvif

Conclusions

GPUs achieve performance by specialized hardware
Acceleration can be done by different means
Libraries are the easiest
OpenACC can give first entry point
Full power with CUDA
Threads, Blocks to expose parallelism for a kernel
Several API routines exist
Cooperative Groups: new entry point
Beyond CUDA: Thrust, pSTL, HIP, SYCL, Kokkos, …

Member of the Helmholtz Association 20 January 2023 Slide 74 74

Conclusions

GPUs achieve performance by specialized hardware
Acceleration can be done by different means
Libraries are the easiest
OpenACC can give first entry point
Full power with CUDA
Threads, Blocks to expose parallelism for a kernel
Several API routines exist
Cooperative Groups: new entry point
Beyond CUDA: Thrust, pSTL, HIP, SYCL, Kokkos, …

Thank you

for your att
ention!

a.herten@fz-juelich.de

Member of the Helmholtz Association 20 January 2023 Slide 74 74

mailto:a.herten@fz-juelich.de

Appendix

Appendix
GPU Model/Vendor Compatibility Table
References
Glossary

Member of the Helmholtz Association 20 January 2023 Slide 2 20

Appendix
GPUModel/Vendor Compatibility Table

GPU Programming Models: Table
Full vendor support
Indirect, but comprehensive
support, by vendor
Vendor support, but not (yet)
entirely comprehensive

Comprehensive support, but
not by vendor

Limited, probably indirect
support – but at least some
No direct support available, but

of course one could ISO-C-bind
your way through it or directly
link the libraries

C++ C++ (sometimes also C)
Fortran Fortran

CUDA HIP SYCL OpenACC OpenMP
C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran

NVIDIA 1 2 3 4 5 6 7 8 9 10

AMD 11 12 13 4 14 6 15 16 17 17

Intel 18 19 20 21 22 6 23 23 24 24

Standard Kokkos ALPAKA
C++ Fortran C++ Fortran C++ Fortran Python

NVIDIA 25 26 27 28 29 30 31

AMD 32 33 34 28 35 30 36

Intel 37 38 39 28 40 30 41

Member of the Helmholtz Association 20 January 2023 Slide 4 20

GPU Programming Models: Footnotes I
1: CUDA C/C++ is supported on NVIDIA GPUs through the CUDA Toolkit
2: CUDA Fortran, a proprietary Fortran extension, is supported on NVIDIA GPUs via the NVIDIA HPC SDK
3: HIP programs can directly use NVIDIA GPUs via a CUDA backend; HIP is maintained by AMD
4: No such thing like HIP for Fortran, but AMD offers Fortran interfaces to HIP and ROCm libraries in hipfort
5: SYCL can be used on NVIDIA GPUs with experimental support either in SYCL directly or in DPC++, or via hipSYCL
6: No such thing like SYCL for Fortran
7: OpenACC C/C++ supported on NVIDIA GPUs directly (and best) through NVIDIA HPC SDK; additional, somewhat limited
support by GCC C compiler and in LLVM through Clacc
8: OpenACC Fortran supported on NVIDIA GPUs directly (and best) through NVIDIA HPC SDK; additional, somewhat limited
support by GCC Fortran compiler and Flacc
9: OpenMP in C++ supported on NVIDIA GPUs through NVIDIA HPC SDK (albeit with a few limits), by GCC, and Clang; see
OpenMP ECP BoF on status in 2022.
10: OpenMP in Fortran supported on NVIDIA GPUs through NVIDIA HPC SDK (but not full OpenMP feature set available), by
GCC, and Flang
25: pSTL features supported on NVIDIA GPUs through NVIDIA HPC SDK
26: Standard Language parallel features supported on NVIDIA GPUs through NVIDIA HPC SDK
27: Kokkos supports NVIDIA GPUs by calling CUDA as part of the compilation process
28: Kokkos is a C++ model, but an official compatibility layer (Fortran Language Compatibility Layer, FLCL) is available.

Member of the Helmholtz Association 20 January 2023 Slide 5 20

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/hpc-sdk
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/ROCmSoftwarePlatform/hipfort
https://github.com/codeplaysoftware/sycl-for-cuda/blob/cuda/sycl/doc/GetStartedWithSYCLCompiler.md#build-sycl-toolchain-with-support-for-nvidia-cuda
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md#build-dpc-toolchain-with-support-for-nvidia-cuda
https://github.com/illuhad/hipSYCL
https://gcc.gnu.org/wiki/OpenACC
https://csmd.ornl.gov/project/clacc
https://ieeexplore.ieee.org/document/9651310
https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#openmp-use
https://www.openmp.org/wp-content/uploads/2022_ECP_Community_BoF_Days-OpenMP_RoadMap_BoF.pdf
https://docs.nvidia.com/hpc-sdk/compilers/c++-parallel-algorithms/
https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos-fortran-interop

GPU Programming Models: Footnotes II
29: Alpaka supports NVIDIA GPUs by calling CUDA as part of the compilation process; also, an OpenMP backend can be
used
30: Alpaka is a C++ model
31: There is a vast community of offloading Python code to NVIDIA GPUs, like CuPy, Numba, cuNumeric, andmany others;
NVIDIA actively supports a lot of them, but has no direct product like CUDA for Python; so, the status is somewhere in
between
11: hipify by AMD can translate CUDA calls to HIP calls which runs natively on AMD GPUs
12: AMD offers a Source-to-Source translator to convert some CUDA Fortran functionality to OpenMP for AMD GPUs
(gpufort); in addition, there are ROCm library bindings for Fortran in hipfort OpenACC/CUDA Fortran Source-to-Source
translator
13: HIP is the preferred native programmingmodel for AMD GPUs
14: SYCL can use AMD GPUs, for example with hipSYCL or DPC++ for HIP AMD
15: OpenACC C/C++ can be used on AMD GPUs via GCC or Clacc; also, Intel's OpenACC to OpenMP Source-to-Source
translator can be used to generate OpenMP directives from OpenACC directives
16: OpenACC Fortran can be used on AMD GPUs via GCC; also, AMD's gpufort Source-to-Source translator canmove
OpenACC Fortran code to OpenMP Fortran code, and also Intel's translator can work
17: AMD offers a dedicated, Clang-based compiler for using OpenMP on AMD GPUs: AOMP; it supports both C/C++ (Clang)
and Fortran (Flang, example)

Member of the Helmholtz Association 20 January 2023 Slide 6 20

https://github.com/alpaka-group/alpaka
https://cupy.dev/
https://numba.pydata.org/
https://developer.nvidia.com/cunumeric
https://github.com/ROCm-Developer-Tools/HIPIFY
https://github.com/ROCmSoftwarePlatform/gpufort
https://github.com/ROCmSoftwarePlatform/hipfort
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/illuhad/hipSYCL
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md#build-dpc-toolchain-with-support-for-hip-amd
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://github.com/ROCm-Developer-Tools/aomp
https://github.com/ROCm-Developer-Tools/aomp/tree/aomp-dev/examples/fortran/simple_offload

GPU Programming Models: Footnotes III
32: Intel's DPC++ (oneAPI) can be compiled with an experimental HIP AMD backend, allowing to launch STL algorithms to
AMD GPUs; caveats from Intel's STL support apply
33: Currently, no (known) way to launch Standard-based parallel algorithms on AMD GPUs
34: Kokkos supports AMD GPUs through HIP
35: Alpaka supports AMD GPUs through HIP or through an OpenMP backend
36: AMD does not officially support GPU programming with Python (also not semi-officially like NVIDIA), but third-party
support is available, for example through Numba (currently inactive) or a HIP version of CuPy
18: SYCLomatic translates CUDA code to SYCL code, allowing it to run on Intel GPUs; also, Intel's DPC++ Compatibility Tool
can transform CUDA to SYCL
19: No direct support, only via ISO C bindings, but at least an example can be found on GitHub; it's pretty scarce and not by
Intel itself, though
20: CHIP-SPV supports mapping CUDA and HIP to OpenCL and Intel's Level Zero, making it run on Intel GPUs
21: No such thing like HIP for Fortran
22: SYCL is the prime programmingmodel for Intel GPUs; actually, SYCL is only a standard, while Intel's implementation of
it is called DPC++ (Data Parallel C++), which extends the SYCL standard in various places; actually actually, Intel
namespaces everything oneAPI these days, so the full proper name is Intel oneAPI DPC++ (which incorporates a C++
compiler and also a library)
23: OpenACC can be used on Intel GPUs by translating the code to OpenMP with Intel's Source-to-Source translator

Member of the Helmholtz Association 20 January 2023 Slide 7 20

https://intel.github.io/llvm-docs/GetStartedGuide.html#build-dpc-toolchain-with-support-for-hip-amd
https://numba.pydata.org/numba-doc/latest/roc/index.html
https://docs.cupy.dev/en/latest/install.html?highlight=rocm#building-cupy-for-rocm-from-source
https://github.com/oneapi-src/SYCLomatic
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html
https://github.com/codeplaysoftware/SYCL-For-CUDA-Examples/tree/master/examples/fortran_interface
https://github.com/CHIP-SPV/chip-spv
https://www.khronos.org/sycl/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/data-parallel-c-plus-plus.html
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp

GPU Programming Models: Footnotes IV

24: Intel has extensive support for OpenMP through their latest compilers
37: Intel supports pSTL algorithms through their DPC++ Library (oneDPL; GitHub). It's heavily namespaced and not yet on
the same level as NVIDIA
38: With Intel oneAPI 2022.3, Intel supports DO CONCURRENT with GPU offloading
39: Kokkos supports Intel GPUs through SYCL
40: Alpaka v0.9.0 introduces experimental SYCL support; also, Alpaka can use OpenMP backends
41: Not a lot of support available at the moment, but notably DPNP, a SYCL-based drop-in replacement for Numpy, and
numba-dpex, an extension of Numba for DPC++.

Member of the Helmholtz Association 20 January 2023 Slide 8 20

https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-cpp-fortran-compiler-openmp/top.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-library.html#gs.fifrh5
https://github.com/oneapi-src/oneDPL
https://www.intel.com/content/www/us/en/developer/articles/release-notes/fortran-compiler-release-notes.html
https://github.com/alpaka-group/alpaka/releases/tag/0.9.0
https://intelpython.github.io/dpnp/
https://github.com/IntelPython/numba-dpex

Appendix
References

References I

[2] Kenneth E. Hoff III et al. “Fast Computation of Generalized Voronoi Diagrams Using
Graphics Hardware.” In: Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’99. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 1999, pp. 277–286. ISBN: 0-201-48560-5. DOI:
10.1145/311535.311567. URL: http://dx.doi.org/10.1145/311535.311567
(pages 3–9).

[3] Chris McClanahan. “History and Evolution of GPU Architecture.” In: A Survey Paper
(2010). URL: http://mcclanahoochie.com/blog/wp-
content/uploads/2011/03/gpu-hist-paper.pdf (pages 3–9).

[4] Jack Dongarra et al. TOP500. Nov. 2016. URL:
https://www.top500.org/lists/2016/11/ (pages 3–9).

Member of the Helmholtz Association 20 January 2023 Slide 10 20

https://doi.org/10.1145/311535.311567
http://dx.doi.org/10.1145/311535.311567
http://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf
http://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf
https://www.top500.org/lists/2016/11/

References II

[5] Jack Dongarra et al. Green500. Nov. 2016. URL:
https://www.top500.org/green500/lists/2016/11/ (pages 3–9).

[6] Karl Rupp. Pictures: CPU/GPU Performance Comparison. URL:
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-
characteristics-over-time/ (pages 13, 14).

[13] Wes Breazell. Picture: Wizard. URL:
https://thenounproject.com/wes13/collection/its-a-wizards-world/
(pages 46–50).

Member of the Helmholtz Association 20 January 2023 Slide 11 20

https://www.top500.org/green500/lists/2016/11/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://thenounproject.com/wes13/collection/its-a-wizards-world/

References: Images, Graphics I

[1] Héctor J. Rivas. Color Reels. Freely available at Unsplash. URL:
https://unsplash.com/photos/87hFrPk3V-s.

[7] Forschungszentrum Jülich GmbH (Ralf-Uwe Limbach). JUWELS Booster.

[8] Mark Lee. Picture: kawasaki ninja. URL:
https://www.flickr.com/photos/pochacco20/39030210/ (pages 19, 20).

[9] Shearings Holidays. Picture: Shearings coach 636. URL:
https://www.flickr.com/photos/shearings/13583388025/ (pages 19, 20).

[10] Nvidia Corporation. Pictures: Volta GPU. Volta Architecture Whitepaper. URL:
https://images.nvidia.com/content/volta-architecture/pdf/Volta-
Architecture-Whitepaper-v1.0.pdf.

Member of the Helmholtz Association 20 January 2023 Slide 12 20

https://unsplash.com/photos/87hFrPk3V-s
https://www.flickr.com/photos/pochacco20/39030210/
https://www.flickr.com/photos/shearings/13583388025/
https://images.nvidia.com/content/volta-architecture/pdf/Volta-Architecture-Whitepaper-v1.0.pdf
https://images.nvidia.com/content/volta-architecture/pdf/Volta-Architecture-Whitepaper-v1.0.pdf

References: Images, Graphics II

[11] Nvidia Corporation. Pictures: Ampere GPU. Ampere Architecture Whitepaper. URL:
http://www.nvidia.com/nvidia-ampere-architecture-whitepaper
(pages 35–37).

[12] Nvidia Corporation. Pictures: Hopper GPU. Nvidia Developer Technical Blog: NVIDIA
Hopper Architecture In-Depth. URL: https:
//developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/.

[14] OLCF at ORNL. Picture: Frontier. Flickr. URL:
https://www.flickr.com/photos/olcf/52117623843/.

Member of the Helmholtz Association 20 January 2023 Slide 13 20

http://www.nvidia.com/nvidia-ampere-architecture-whitepaper
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://www.flickr.com/photos/olcf/52117623843/

Appendix
Glossary

Glossary I

AMD Manufacturer of CPUs and GPUs. 3, 4, 5, 6, 7, 8, 9, 60, 61, 62, 63, 64, 65, 198, 199
Ampere GPU architecture from NVIDIA (announced 2019). 16, 17

API A programmatic interface to software by well-defined functions. Short for
application programming interface. 60, 61, 62, 63, 64, 65, 199

ATI Canada-based GPUsmanufacturing company; bought by AMD in 2006. 3, 4, 5, 6,
7, 8, 9

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 2, 3, 4, 5, 6, 7, 8, 9, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
76, 94, 95, 96, 101, 102, 103, 104, 105, 164, 181, 182, 199

Member of the Helmholtz Association 20 January 2023 Slide 15 20

Glossary II

HIP GPU programmingmodel by AMD to target their own and NVIDIA GPUs with one
combined language. Short for Heterogeneous-compute Interface for Portability.
60, 61, 62, 63, 64, 65

JUWELS Jülich’s new supercomputer, the successor of JUQUEEN. 15, 16, 17

NVIDIA US technology company creating GPUs. 3, 4, 5, 6, 7, 8, 9, 15, 16, 17, 35, 36, 37, 60,
61, 62, 63, 64, 65, 137, 197, 198, 200

NVLink NVIDIA’s communication protocol connecting CPU↔ GPU and GPU↔ GPUwith
high bandwidth. 200

OpenACC Directive-based programming, primarily for many-core machines. 55, 56, 57, 58,
59, 181, 182

Member of the Helmholtz Association 20 January 2023 Slide 16 20

Glossary III
OpenCL The Open Computing Language. Framework for writing code for heterogeneous

architectures (CPU, GPU, DSP, FPGA). The alternative to CUDA. 3, 4, 5, 6, 7, 8, 9,
60, 61, 62, 63, 64, 65

OpenGL The Open Graphics Library, an API for rendering graphics across different
hardware architectures. 3, 4, 5, 6, 7, 8, 9

OpenMP Directive-based programming, primarily for multi-threadedmachines. 55, 56,
57, 58, 59

ROCm AMD software stack and platform to program AMD GPUs. Short for Radeon Open
Compute (Radeon is the GPU product line of AMD). 60, 61, 62, 63, 64, 65

SAXPY Single-precision A× X+ Y. A simple code example of scaling a vector and adding
an offset. 43, 67, 174, 175

Member of the Helmholtz Association 20 January 2023 Slide 17 20

Glossary IV

Tesla The GPU product line for general purpose computing computing of NVIDIA. 15,
101, 102, 103, 104, 105

Thrust A parallel algorithms library for (among others) GPUs. See
https://thrust.github.io/. 164

V100 A large GPU with the Volta architecture from NVIDIA. It employs NVLink 2 as its
interconnect and has fast HBM2memory. Additionally, it features Tensorcores for
Deep Learning and Independent Thread Scheduling. 101, 102, 103, 104, 105

Volta GPU architecture from NVIDIA (announced 2017). 200

CG Cooperative Groups. 143, 144, 150

Member of the Helmholtz Association 20 January 2023 Slide 18 20

https://thrust.github.io/

Glossary V

CPU Central Processing Unit. 15, 19, 20, 21, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 43, 60,
61, 62, 63, 64, 65, 107, 108, 109, 115, 116, 117, 118, 119, 127, 128, 129, 130, 131,
132, 135, 197, 198, 199

GPU Graphics Processing Unit. 2, 3, 4, 5, 6, 7, 8, 9, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 42, 46, 47, 48, 49, 50, 51, 54, 55, 56, 57,
60, 61, 62, 63, 64, 65, 66, 77, 78, 79, 94, 95, 96, 101, 102, 103, 104, 105, 107, 108,
109, 110, 111, 112, 115, 116, 117, 118, 119, 127, 128, 129, 130, 131, 132, 134, 135,
136, 137, 141, 142, 153, 163, 168, 176, 179, 181, 182, 197, 198, 199, 200

SIMD Single Instruction, Multiple Data. 28, 29, 30, 31, 32, 33, 34, 35, 36, 37
SIMT Single Instruction, Multiple Threads. 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,

34, 35, 36, 37

Member of the Helmholtz Association 20 January 2023 Slide 19 20

Glossary VI

SM Streaming Multiprocessor. 28, 29, 30, 31, 32, 33, 34, 35, 36, 37

SMT Simultaneous Multithreading. 28, 29, 30, 31, 32, 33, 34, 35, 36, 37

Member of the Helmholtz Association 20 January 2023 Slide 20 20

	Outline
	Introduction
	GPU History
	JUPITER
	JUWELS
	JUWELS Cluster
	JUWELS Booster

	Platform
	Comparisons
	GPU Architecture
	Summary

	Programming GPUs
	Libraries
	Directives
	CUDA C/C++
	Kernels
	Grid, Blocks
	Memory Management
	Unified Memory

	Performance Analysis
	Beyond CUDA
	Cooperative Groups
	MPI
	Thrust
	Standard Parallelism
	HIP
	SYCL
	MORE MODELS!!1

	Appendix
	Appendix
	GPU Model/Vendor Compatibility Table
	References

	References
	References
	Glossary

	Glossary
	Acronyms

