
Signal denoising through topographic modularity of neural circuits

Barna Zajzon1,2*, David Dahmen1, Abigail Morrison1,3, Renato Duarte1,4

1 Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and
JARA-BRAIN Institute I, Jülich Research Centre, 52425 Jülich, Germany
2 Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
3 Department of Computer Science 3 - Software Engineering, RWTH Aachen University, Aachen, Germany
4 Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands

* b.zajzon@fz-juelich.de

Abstract

Information from the sensory periphery is conveyed to the cortex via structured projection pathways that
spatially segregate stimulus features, providing a robust and efficient encoding strategy. Beyond sensory
encoding, this prominent anatomical feature extends throughout the neocortex. However, the extent to
which it influences cortical processing is unclear. In this study, we combine cortical circuit modeling with
network theory to demonstrate that the sharpness of topographic projections acts as a bifurcation parameter,
controlling the macroscopic dynamics and representational precision across a modular network. By shifting
the balance of excitation and inhibition, topographic modularity gradually increases task performance and
improves the signal-to-noise ratio across the system. We demonstrate that in biologically constrained networks,
such a denoising behavior is contingent on recurrent inhibition. We show that this is a robust and generic
structural feature that enables a broad range of behaviorally-relevant operating regimes, and provide an
in-depth theoretical analysis unravelling the dynamical principles underlying the mechanism.
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Introduction1

Sensory inputs are often ambiguous, noisy and imprecise. Due to volatility in the environment and inaccurate2

peripheral representations, the sensory signals that arrive at the neocortical circuitry are often incomplete3

or corrupt [1, 2]. However, from these noisy input streams, the system is able to acquire reliable internal4

representations and extract relevant computable features at various degrees of abstraction [3, 4, 5]. Sensory5

perception in the mammalian neocortex thus relies on efficiently detecting the relevant input signals while6

minimizing the impact of noise.7

Making sense of the environment also requires the estimation of features not explicitly represented by low-level8

sensory inputs. These inferential processes [6, 7] rely on the propagation of internal signals such as expectations9

and predictions, the accuracy of which must be evaluated against the ground truth, i.e. the sensory input stream.10

In a highly dynamic environment, this translates to a continuous process whose precision hinges on the fidelity11

with which external stimuli are encoded in the neural substrate. Additionally, as the system is modular and12

hierarchical (strikingly so in the sensory and motor components [8, 9]), it is critical that the external signal13

permeates the different processing modules despite the increasing distance from the sensory periphery (the14

input source) and the various transformations it is exposed to along the way, which degrade the signal via the15

interference of task-irrelevant and intrinsic, ongoing activity.16

Accurate signal propagation can be achieved in a number of ways. One obvious solution is the direct routing17

and distribution of the signal, such that direct sensory input can be fed to different processing modules, which18

may be partially achieved through thalamocortical projections [10, 11]. Another possibility, which we explore in19

this study, is to propagate the input signal through tailored pathways that route the information throughout20

the system, allowing different processing stages to retrieve it without incurring much representational loss.21

Throughout the mammalian neocortex, the existence and characteristics of structured projections (topographic22

maps) presents a possible substrate for such signal routing. By preserving the relative organization of tuned23

neuronal populations, such maps imprint spatiotemporal features of (noisy) sensory inputs onto the cortex24

[12, 13, 14]. In a previous study [15], we discovered that structured projections can create feature-specific25

pathways that allow the external inputs to be faithfully represented and propagated throughout the system, but26

it remains unclear which connectivity properties are critical and what the underlying mechanism is. Moreover,27

beyond mere sensory representation, there is evidence that such structure-preserving mappings are also involved28

in more complex cognitive processes in associative and frontal areas [16, 17, 18], suggesting that topographic29

maps are a prominent structural feature of cortical organization.30

In this study, we hypothesize that structured projection pathways allow sensory stimuli to be accurately31

reconstructed as they permeate multiple processing modules. We demonstrate that, by modulating effective32

connectivity and regional E/I balance, topographic projections additionally serve a denoising function, not33

merely allowing the faithful propagation of input signals, but systematically improving the system’s internal34

representations and increasing signal-to-noise ratio. We identify a critical threshold in the degree of modularity in35

topographic projections, beyond which the system behaves effectively as a denoising autoencoder1. Additionally,36

we demonstrate that this phenomenon is robust, with the qualitative behavior persisting across very different37

models. Theoretical considerations and network simulations show that it hinges solely on the modularity of38

topographic projections and the presence of recurrent inhibition, with the external input and single-neuron39

properties influencing where/when, but not if, denoising occurs. Our results suggest that modular structure in40

feedforward projection pathways can have a significant effect on the system’s qualitative behavior, enabling a41

wide range of behaviorally-relevant and empirically supported dynamic regimes. This allows the system to: (i)42

maintain stable representations of multiple stimulus features [19]; (ii) amplify features of interest while suppressing43

others through winner-takes-all mechanisms [20, 21]; and (iii) dynamically represent different stimulus features44

as stable and metastable states and stochastically switch among active representations through a winnerless45

competition effect [22, 23, 24].46

Our key finding, that the modulation of information processing dynamics and the fidelity of stimulus/feature47

representations results from the structure of topographic feedforward projections, provides new meaning and48

functional relevance to the pervasiveness of these projection maps throughout the mammalian neocortex. Beyond49

routing feature-specific information from sensory transducers through brainstem, thalamus and into primary50

sensory cortices (notably tonotopic, retinotopic and somatotopic maps), their maintenance within the neocortex51

[18] ensures that even cortical regions that are not directly engaged with the sensory input (higher-order cortex),52

can receive faithful representations of it, and that these internal signals, emanating from lower-order cortical53

1Note that the parallel is established here on conceptual, not formal, grounds as the system is capable of retrieving the original,
uncorrupted input from a noisy source, but bears no formal similarity to denoising autoencoder algorithms.
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areas, can dramatically skew and modulate the circuit’s E/I balance and local functional connectivity, resulting54

in fundamental differences in the systems’ responsiveness.55

Results56
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Figure 1: Sequential denoising spiking architecture. (a) A continuous step signal is used to drive the
network. The input is spatially encoded in the first sub-network (SSN0), whereby each input channel is mapped
exclusively onto a sub-population of stimulus-specific excitatory and inhibitory neurons (schematically illustrated
by the colors; see also inset, top left). This exclusive encoding is retained to variable degrees across the network,
through topographically structured feedforward projections (inset, top right) controlled by the modularity parameter
m (see Methods). This is illustrated explicitly for both topographic maps (purple and cyan arrows). Projections
between SSNs are purely excitatory and target both excitatory and inhibitory neurons. (b) Signal reconstruction
across the network. Single-trial illustration of target signal (black step function) and readout output (red curves)
in 3 different SSNs, for m = 0.75 and no added noise (σξ = 0). For simplicity, only two out of ten input channels
are shown. (c) Signal reconstruction error in the different SSNs for the no-noise scenario shown in (b). Color
shade denotes network depth, from SSN0 (lightest) to SSN5 (darkest). The horizontal red line represents chance
level, while the grey vertical line marks the transition (switching) point mswitch ≈ 0.83 (see main text). Figure 1 -
figure supplement 1 shows the task performance for a broader range of parameters. (d) Performance gain across the
network, relative to SSN0, for the setup illustrated in (b). (e) as in (b) but for m = 0.9. (f) Reconstruction error
in SSN5 for the different noise intensities. Horizontal and vertical dashed lines as in (c). (g) Performance gain in
SSN5, relative to SSN0.

To investigate the role of structured pathways between processing modules in modulating the fidelity of stimulus57

representations, we study a network comprising up to six sequentially connected sub-networks (SSNs, see Methods58

and Fig. 1a). Each SSN is a balanced random network (see, e.g. [25]) of 10000, sparsely and randomly coupled59

leaky integrate-and-fire neurons (80% excitatory and 20% inhibitory). In each SSN, neurons are assigned to60

sub-populations associated with a particular stimulus. Excitatory neurons belonging to such stimulus-specific61

sub-populations then project to the subsequent SSN with a varying degree of specificity. We refer to a set of62

stimulus-specific sub-populations across the network and the structured feedforward projections among them as63

a topographic map. The specificity of the map is determined by the degree of modularity of the corresponding64

projections matrices (see, e.g. Fig. 1a). Modularity is thus defined as the relative density of connections within65

a stimulus-specific pathway (i.e. connecting sub-populations associated to the same stimulus; see Methods and66
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Fig. 1a). In the following, we study the role of topographic specificity in modulating the system’s functional and67

representational dynamics and its ability to cope with noise-corrupted input signals.68

Sequential denoising through structured projections69

By systematically varying the degree of modular specialization in the feedforward projections (modularity70

parameter, m, see Methods and Fig. 1), we can control the segregation of stimulus-specific pathways across the71

network and investigate how it influences the characteristics of neural representations as the signal propagates.72

If the feedforward projections are unstructured or moderately structured (m ≲ 0.8), information about the input73

fails to permeate the network, resulting in a chance-level reconstruction accuracy in the last sub-network, SSN5,74

even in the absence of noise (see Fig. 1b-c). However, as m approaches a switching value mswitch ≈ 0.83, there is75

a qualitative transition in the system’s behavior, leading to a consistently higher reconstruction accuracy across76

the sub-networks (Fig. 1b-e), regardless of the amount of noise added to the signal (Fig. 1f-g).77

Beyond this transition point, reconstruction accuracy improves with depth, i.e. the signal is more accurately78

represented in SSN5 than in the initial sub-network, SSN0, with an effective accuracy gain of over 40% (Fig.79

1d, g). While the addition of noise does impair the absolute reconstruction accuracy in all cases (see Figure80

1 - figure supplement 1), the denoising effect persists even if the input is severely corrupted (σξ = 3, see Fig.81

1f-g). This is a counter-intuitive result, suggesting that topographic modularity is not only necessary for reliable82

communication across multiple populations (see [15]), but also supports an effective denoising effect, whereby83

representational precision increases with depth, even if the signal is profoundly distorted by noise.84

Noise suppression and response amplification85

The sequential denoising effect observed beyond the transition point mswitch ≈ 0.83 results in an increasingly86

accurate input encoding through progressively more precise internal representations. In general, such a phe-87

nomenon could be achieved either through noise suppression, stimulus-specific response amplification or both. In88

this section, we examine these possibilities by analysing and comparing the input-driven dynamics of the different89

sub-networks. The strict segregation of stimulus-specific sub-populations in SSN0 is only fully preserved across90

the system if m = 1, in which case signal encoding and transmission primarily rely on this spatial segregation.91

Spiking activity across the different SSNs (Fig. 2a) demonstrates that the system gradually sharpens the92

segregation of stimulus-specific sub-populations; indeed, in systems with fully modular feedforward projections,93

activity in the last sub-network is concentrated predominantly in the stimulated sub-populations. This effect can94

be observed in both excitatory (E) and inhibitory (I) populations, as both are equally targeted by the feedforward95

excitatory projections. The sharpening effect consists of both noise suppression and response amplification (Fig.96

2b), measured as the relative firing rates of the non-stimulated νNS
5 /νNS

0 and stimulated sub-populations νS5 /ν
S
0 ,97

respectively. For m < mswitch, noise suppression is only marginal and responses within the stimulated pathways98

are not amplified (νS5 /νS0 < 1).99

Mean-field analysis of the stationary network activity (see Methods and Appendix B) predicts that the firing100

rates of the stimulus-specific sub-populations increase systematically with modularity, whereas the untuned101

neurons are gradually silenced (Fig. 2c, left). At the transition point mswitch ≈ 0.83, mean firing rates across the102

different sub-networks converge, which translates into a globally uniform signal encoding capacity, corresponding103

to the zero-gain convergence point in Fig. 1d, g. As the degree of modularity increases beyond this point, the104

self-consistent state is lost again as the functional dynamics across the network shifts towards a gradual response105

sharpening, whereby the activity of stimulus-tuned neurons become increasingly dominant (Fig. 2a-c). The106

effect is more pronounced for the deeper sub-networks. Note that the analytical results match well with those107

obtained by numerical simulation (Fig. 2c, right).108

In the limit of very deep networks (up to 50 SSNs, Fig. 2d) the system becomes bistable, with rates converging to109

either a high-activity state associated with signal amplification or a low-activity state driven by the background110

input. The transition point is observed at a modularity value of m = 0.83, matching the results reported so111

far. Below this value, elevated activity in the stimulated sub-populations can be maintained across the initial112

sub-networks (< 10), but eventually dies out; the rate of all neurons decays and information about the input113

cannot reach the deeper populations. Importantly, for m = 0.83, the transition towards the high-activity state114

is slower. This allows the input signal to faithfully propagate across a large number of sub-networks (≈ 15),115

without being driven into implausible activity states.116
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Figure 2: Activity modulation and representational precision. (a) 1 second of spiking activity observed
across 1000 randomly chosen excitatory (blue) and inhibitory (red) neurons in SSN0, SSN2 and SSN5, for σξ = 3 and
m = 0.75 (top) and m = 1 (bottom). (b) Mean quotient of firing rates in SSN5 and SSN0 (ν5/ν0) for stimulated (S,
left) and non-stimulated (NS, right) sub-populations for different input noise levels, describing response amplification
and noise suppression, respectively. (c) Mean firing rates of the stimulated (top) and non-stimulated (bottom)
excitatory sub-populations in the different SSNs (color shade as in Fig. 1), for σξ = 0. For modularity values
facilitating an asynchronous irregular regime across the network, the firing rates predicted by mean-field theory (left)
closely match the simulation data (right). (d) Mean-field predictions for the stationary firing rates of the stimulated
(top) and non-stimulated (bottom) sub-populations, in a system with 50 sub-networks and σξ = 0. Note that all
reported simulation data corresponds to the mean firing rates acquired over a period of 10 seconds and averaged
across 5 trials per condition. Figure 2 - figure supplement 1 shows the firing rates as a function of the input intensity
λ.

E/I balance and asymmetric effective couplings117

The departure from the balanced activity in the initial sub-networks can be better understood by zooming in118

at the synaptic level and analysing how topography influences the synaptic input currents. The segregation of119

feedforward projections into stimulus-specific pathways breaks the symmetry between excitation and inhibition120

(see Fig. 3a) that characterizes the balanced state [26, 27], for which the first two sub-networks were tuned121

(see Methods). E/I balance is thus systematically shifted towards excitation in the stimulated populations122

and inhibition in the non-stimulated ones. Neurons belonging to sub-populations associated with the active123

stimulus receive significantly more net overall excitation, whereas the other neurons become gradually more124

inhibited. This disparity grows not only with modularity but also with network depth. Overall, across the whole125

system, increasing modularity results in an increasingly inhibition-dominated dynamical regime (inset in Fig.126

3a), whereby stronger effective inhibition silences non-stimulated populations, thus sharpening stimulus / feature127

representations by concentrating activity in the stimulus-driven sub-populations.128

To gain an intuitive understanding of these effects from a dynamical systems perspective, we linearize the network129

dynamics around the stationary working points of the individual populations [28] in order to obtain the effective130

connectivity W of the system (see Methods and Appendix B). The effective impact of a single spike from a131

presynaptic neuron j on the firing rate of a postsynaptic neuron i (the effective weight wij ∈ W ) is determined132

not only by the synaptic efficacies Jij , but also by the statistics of the synaptic input fluctuations to the target133

cell i that determine its excitability (see Methods, Eq. 6). This analysis reveals that there is an increase in the134

effective synaptic input onto neurons in the stimulated sub-populations as a function of modularity (Fig. 3b).135

Conversely, non-stimulated neurons effectively receive weaker excitatory (and stronger inhibitory) drive and136
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Figure 3: Asymmetric effective couplings modulate the E/I balance and support sequential denoising.
(a) Mean synaptic input currents for neurons in the stimulated (solid curves) and non-stimulated (dashed curves)
excitatory sub-populations in the different SSNs. To avoid clutter, data for SSN0 is only shown by markers
(independent of m). Inset shows the currents (in pA) averaged over all excitatory neurons in the different sub-
networks; increasing modularity leads to a dominance of inhibition in the deeper sub-networks. Color shade represents
depth, from SSN1 (light) to SSN5 (dark). (b) Mean-field approximation of the effective recurrent weights in SSN5.
Curve shade and style as in (a). (c) Spectral radius of the effective connectivity matrices ρ(W ) as a function of
modularity. (d) Eigenvalue spectra for the effective coupling matrices in SSN5, for m = 0.8 (top) and m = 0.9
(bottom). The largest negative eigenvalue (outlier, see Methods), characteristic of inhibition-dominated networks, is
omitted for clarity.

become increasingly less responsive (see Fig. 3a, b). The role of topographic modularity in denoising can thus137

be understood as a transient, stimulus-specific change in effective connectivity.138

For low and moderate topographic precision (m ≲ 0.83), denoising does not occur as the effective weights139

are sufficiently similar to maintain a stable E/I balance across all populations and sub-networks (Fig. 3a, b),140

resulting in a relatively uniform global dynamical state (indicated in Fig. 3c by a constant spectral radius for141

m ≲ 0.83, see also Methods) and stable linearized dynamics (ρ(W ) < 1).142

However, as the feedforward projections become more structured, the system undergoes qualitative changes:143

after a weak transient (0.83 ≲ m ≲ 0.85) the spectral radius ρ in the deep SSNs expands due to the increased144

effective coupling to the stimulated sub-population (Fig. 3b); the spectral radius eventually (m ≳ 0.85) contracts145

with increasing modularity (Fig. 3c, d). Given that ρ is determined by the variance of W , i.e. heterogeneity146

across connections [29], this behavior is expected: most weights are in the non-stimulated pathways, which147

decrease with larger m and network depth (Fig. 3b). Strong inhibitory currents (Fig. 3a) suppress the majority148

of neurons, thereby reducing noise, as demonstrated by the collapse of the bulk of the eigenvalues towards the149

center for larger m (Fig. 3d). Indicative of a more constrained state-space, this contractive effect suggests that150

population activity becomes gradually entrained by the spatially encoded input along the stimulated pathway,151

whereas the responses of the non-stimulated neurons have a diminishing influence on the overall behavior.152

By biasing the effective connectivity of the system, precise topography can thus modulate the balance of excitation153

and inhibition in the different sub-networks, concentrating the activity along specific pathways. This results in154

both a systematic amplification of stimulus-specific responses and a systematic suppression of noise (Fig. 2b).155

The sharpness / precision of topographic specificity along these pathways thus acts as a critical control parameter156

that largely determines the qualitative behavior of the system and can dramatically alter its responsiveness to157

external inputs.158

Modulating inhibition159

How can the system generate and maintain the elevated inhibition underlying such a noise-suppressing regime?160

On the one hand, feedforward excitatory input may increase the activity of certain excitatory neurons in Ei of161
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highly synchronized network activity, hindering signal representation. (c) Same as the baseline network in (a), but
with random projections for E4 → I5 and additional but unspecific (Poissonian) excitatory input to I5 controlled
via ν+

X . Without such input (ν+
X = 0, left), the activity is strongly synchronous, but this is compensated for by the

additional excitation, reducing synchrony and restoring the denoising property (ν+
X = 10 spikes/sec, right). Figure 4

- figure supplement 1 depicts the activity statistics in the last two modules, for the different scenarios.

sub-network SSNi, which, in turn, can lead to increased mean inhibition through local recurrent connections.162

On the other hand, denoising could depend strongly on the concerted topographic projections onto Ii. Such163

structured feedforward inhibition is known to play important functional roles in, e.g., sharpening the spatial164

contrast of somatosensory stimuli [30] or enhancing coding precision throughout the ascending auditory pathways165

[31].166

To investigate whether recurrent activity alone can generate sufficiently strong inhibition for signal transmission167

and denoising, we maintained the modular structure between the excitatory populations and randomized the168

feedforward projections onto the inhibitory ones (m = 0 for Ei → Ii+1, compare top panels of Fig. 4a and b).169

This leads to unstable firing patterns in the downstream sub-networks, characterized by significant accumulation170

of synchrony and increased firing rates (see bottom panels of Fig. 4a and b and Figure 4 - figure supplement171

1a, b). These effects, known to result from shared pre-synaptic excitatory inputs (see, e.g. [32, 33, 34]), are172

more pronounced for larger m and network depth (see Figure 4 - figure supplement 1). Compared with the173

baseline network, whose activity shows clear spatially encoded stimuli (sequential activation of stimulus-specific174

sub-populations (Fig. 4a, bottom)), removing structure from the projections onto inhibitory neurons abolishes175

the effect and prevents accurate signal transmission.176

These effects of unstructured inhibitory projections are so marked that they can be observed even if a single set177

of projections is modified: this can be seen in Fig. 4c, where only the E4 → I5 connections are randomized. It is178

worth noting, however, that the excessive synchronization that results from unstructured inhibitory projections179

(Fig. 4c bottom left, no additional input condition) can be easily counteracted by driving I5 (the inhibitory180

population that receives only unstructured projections) with additional uncorrelated external input. If strong181

enough (ν+X ≈ 10spk/sec), this additional external drive pushes the inhibitory population into an asynchronous182

regime that restores the sharp, stimulus-specific responses in the excitatory population of the corresponding183

sub-network (see Fig. 4c bottom right, and Figure 4 - figure supplement 1c).184

These results emphasize the control of inhibitory neurons’ responsiveness as the main causal mechanism behind185

the effects reported. Elevated local inhibition is strictly required, but whether this is achieved by tailored,186

stimulus-specific activation of inhibitory sub-populations, or by uncorrelated excitatory drive onto all inhibitory187

neurons appears to be irrelevant and both conditions result in sharp, stimulus-tuned responses in the excitatory188

populations.189

A generalizable structural effect190

We have demonstrated that, by controlling the different sub-networks’ operating point, the sharpness of191

feedforward projections allows the architecture to systematically improve the quality of internal representations192

and retrieve the input structure, even if profoundly corrupted by noise. In this section, we investigate the193
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Figure 5: Denoising through modular topography is a robust structural effect. (a) Signal reconstruction
(top) and corresponding network activity (bottom) for a network with LIF neurons and conductance-based synapses
(see Methods). Single-trial illustration of target signal (black step function) and readout output (red curves) in three
different SSNs, for m = 0.9 and strong noise corruption (σξ = 3). For simplicity, only two out of ten input channels
are shown. Figure 5 - figure supplement 1 shows additional activity statistics. (b) As in (a) for a rate-based model
with m = 1 and σξ = 1 (see Methods for details).

robustness of the phenomenon in order to determine whether it can be entirely ascribed to the topographic194

projections (a structural/architectural feature) or if the particular choices of models and model parameters for195

neuronal and synaptic dynamics contribute to the effect.196

To do so, we study two alternative model systems on the signal denoising task. These are structured similarly197

to the baseline system explored so far, comprising separate sequential sub-networks with modular feedforward198

projections among them (see Fig. 1 and Methods), but vary in total size, neuronal and synaptic dynamics.199

In the first test case, only the models of synaptic transmission and corresponding parameters are altered. To200

increase biological verisimilitude and following [15], synaptic transmission is modeled as a conductance-based201

process, with different kinetics for excitatory and inhibitory transmission, corresponding to the responses of202

AMPA and GABAa receptors, respectively, see Methods and Supplementary File 3 for details. The results,203

illustrated in Fig. 5a, demonstrate that task performance and population activity across the network follow204

a similar trend to the baseline model (Fig. 1 and Fig. 2a, b). Despite severe noise corruption, the system is205

able to generate a clear, discernible representation of the input as early as SSN2 and can accurately reconstruct206

the signal. Importantly, the relative improvement with increasing modularity and network depth is retained.207

In comparison to the baseline model, the transition occurs for a slightly different topographic configuration,208

mswitch ≈ 0.85, at which point the network dynamics converges towards a low-rate, stable asynchronous irregular209

regime across all populations, facilitating a linear firing rate propagation along the topographic maps (Figure 5 -210

figure supplement 1).211

The second test case is a smaller and simpler network of nonlinear rate neuron models (see Fig. 5b and212
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Methods) which interact via continuous signals (rates) rather than discontinuities (spikes). Despite these213

profound differences in the neuronal and synaptic dynamics, the same behavior is observed, demonstrating that214

sequential denoising is a structural effect, dependent on the population firing rates and thus less sensitive to215

fluctuations in the precise spike times. Moreover, the robustness with respect to the network size suggests that216

denoising could also be performed in smaller, localized circuits, possibly operating in parallel on different features217

of the input stimuli.218

Variable map sizes219

a b c x 10-1

d = 0.2

d = 0.01

d = 0.1 (baseline)

Figure 6: Variation in the map sizes. (a) Difference in the firing rates of the stimulated sub-populations in the
first and last sub-networks, νS

5 − νS
0 , as a function of modularity and map size (parameterized by d and constant

throughout the network, i.e. δ = 0, see Methods). Depicted values correspond to stationary firing rates predicted by
mean-field theory, smoothed using a Lanczos filter. Note that, in order to ensure that every neuron was uniquely
tuned, i.e. there is no overlap between stimulus-specific sub-populations, the number of sub-populations was chosen
to be proportional to the map size (NC = 1/d). (b-c) Performance gain in SSN5 relative to SSN0 (ten stimuli, as in
Fig. 1d, g), for varying properties of structural mappings: (b) fixed map size (δ = 0) with color shade denoting
map size, and (c) linearly increasing map size (δ > 0) and a smaller initial map size d0 = 0.04. The results depict
the average performance gains measured across five trials, using the current-based model illustrated in Fig. 1 (ten
stimuli) and no input noise (σξ = 0). Figure 6 - figure supplement 1 further illustrates how the activity varies across
the modules as a function of the map size.

Despite their ubiquity throughout the neocortex, the characteristics of structured projection pathways is far220

from uniform [13], exhibiting marked differences in spatial precision and specificity, aligned with macroscopic221

gradients of cortical organization. This non-uniformity may play an important functional role supporting feature222

aggregation [16] and the development of mixed representations [18] in higher (more anterior) cortical areas. Here,223

we consider two scenarios in the baseline (current-based) model to examine the robustness of our findings to224

more complex topographic configurations.225

First, we varied the size of stimulus-tuned sub-populations (parametrized by di, see Methods) but kept them226

fixed across the network. For small sub-populations and intermediate degrees of topographic modularity, the227

activity along the stimulated pathway decays with network depth, suggesting that input information does not228

reach the deeper SSNs (see Fig. 6a and Figure 6 - figure supplement 1). These results place a lower bound on the229

size of stimulus-tuned sub-populations below which no signal propagation can occur, as reflected by the negative230

gain in performance for d = 0.01 (Fig. 6b). Whereas denoising is robust to variation around the baseline value231

of d = 0.1 that yielded perfect partitioning of the feedforward projections (see Supplementary Materials), an232

upper bound may emerge due to increasing overlap between the maps (d = 0.2 in Fig. 6b). In this case, the233

activity may "spill over" to other pathways than the stimulated one, corrupting the input representations and234

hindering accurate transmission and decoding. This can be alleviated by reduced or no overlap (as in Fig. 6a),235

in which case signal propagation and denoising is successful for larger map sizes (νS5 /νS0 > 1 also for d > 0.1).236

We thus observe a trade-off between map size, overlap and the degree of topographic precision that is required237

to accurately propagate stimulus representations (see Discussion).238

Second, we took into account the fact that these structural features are known to vary with hierarchical depth239

resulting in increasingly larger sub-populations and, consequently, increasingly overlapping stimulus selectivity240

[35, 18, 13]. To capture this effect, we introduce a linear scaling of map size with depth (di+1 = δ + di for i ≥ 1,241

see Methods). The ability of the circuit to gradually clean the signal’s representation is fully preserved, as242

illustrated in Fig. 6c. In fact, for intermediate modularity (m < 0.9) broadening the projections can further243

sharpen the reconstruction precision (compare curves for δ = 0.02 and δ = 0).244

Taken together, these observations demonstrate that a gradual denoising of stimulus inputs can occur entirely245
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as a consequence of the modular wiring between the subsequent processing circuits. Importantly, this effect246

generalizes well across diverse neuron and synapse models, as well as key system properties, making modular247

topography a potentially universal circuit feature for handling noisy data streams.248

Modularity as a bifurcation parameter249

M
o
d
u
la

rity

m = 0.76

Figure 7: Modularity changes the fixed point structure of the system. (a) Sketch for self-consistent
solution (for the full derivation, see Appendix B) for the firing rate of the stimulated sub-population (blue curves)
and the linear relation κν = µ − I (orange lines), in the limit of infinitely deep networks. Squares denote stable
(black) and unstable (red) fixed points where input and output rates are the same. (b) Bifurcation diagram obtained
from numerical evaluation of the mean-field self-consistency equations Eq. 9 and Eq. 10 showing a single stable fixed
point in the fading regime, and multiple stable (black) and unstable (red) fixed points in the active regime where
denoising occurs. (c) Potential energy of the mean activity (see Methods and Eq. 22 in Appendix B) for increasing
topographic modularity. A stable state, corresponding to local minimum in the potential, exists at a low non-zero
rate in every case, including for m ≤ 0.75 (grey dashed curves, inset). For m ≥ 0.76 (colored solid curves), a second
fixed point appears at progressively larger firing rates. (d) Theoretical predictions for the stationary firing rates of
the stimulated and non-stimulated sub-populations in SSN0, as a function of stimulus intensity (λ, see Methods).
Low, standard and high denote λ values of 0.01, 0.05 (baseline value used in Fig. 1) and 0.25, respectively. (e) Sketch
of attractor basins in the potential for different values of m. Markers correspond to the highlighted initial states in
(d), with solid and dashed arrows indicating attraction towards the high- and low-activity state, respectively. (f)
Firing rates of the stimulated sub-population as a function of modularity in the limit of infinite sub-networks, for
the three different λ marked in (d). (g) Modularity threshold for the active regime shifts with increasing noise in
the input, modeled as additional input to the non-stimulated sub-populations in SSN0. Figure 7 - figure supplement
1 show the dependency of the effective feedforward couplings on different parameters. Note that all panels (except
(a)) show theoretical predictions obtained from numerical evaluation of the mean-field self-consistency equations.

The results so far indicate that the modular topographic projections, more so than the individual characteristics250

of neurons and synapses, lead to a sequential denoising effect through a joint process of signal amplification and251

noise suppression. To better understand how the system transitions to such an operating regime, it is helpful to252
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examine its macroscopic dynamics in the limit of many sub-networks [36, 37, 38]. We apply standard mean-field253

techniques [39, 40, 41] to find the asymptotic firing rates (fixed points across sub-networks) of the stimulated254

and non-stimulated sub-populations as a function of topography (Fig. 2d). For this, we can approximate the255

input µ to a group of neurons as a linear function of its firing rate ν with a slope κ that is determined by the256

coupling within the group and an offset given by inputs from other groups of neurons (orange line in Fig. 7a).257

With an approximately sigmoidal rate transfer function, the self-consistent solutions are at the intersections258

marked in Fig. 7a.259

Formally, all neurons in the deep sub-networks of one topographic map form such a group as they share the260

same firing rate (asymptotic value). The coupling κ within this group comprises not only recurrent connections261

of one sub-network but also modular feedforward projections across sub-networks. For small modularity, the262

group is in an inhibition-dominated regime (κ < 0) and we obtain only one fixed point at low activity (Fig. 7a,263

left). Importantly, the firing rate of this fixed point is the same for stimulated and non-stimulated topographic264

maps. Any influence of input signals applied to SSN0 therefore vanishes in the deeper sub-networks and the265

signal cannot be reconstructed (fading regime). As topographic projections become more concentrated (larger266

m), κ changes sign and gradually leads to two additional fixed points (as conceptually illustrated in Fig. 7a and267

quantified in Fig. 7b by numerically solving the self-consistent mean-field equations, see also Appendix B): an268

unstable one (red) that eventually vanishes with increasing m and a stable high-activity fixed point (black). The269

bistability opens the possibility to distinguish between stimulated and non-stimulated topographic maps and270

thereby reconstruct the signal in deep sub-networks: in the active regime beyond the critical modularity threshold271

(here m ≥ mcrit = 0.76), a sufficiently strong input signal can drive the activity along the stimulated map to the272

high-activity fixed point, such that it can permeate the system, while the non-stimulated sub-populations still273

converge to the low-activity fixed point. Note that this critical modularity represents the minimum modularity274

value for which bistability emerges. It typically differs from the actual switching point mswitch, which additionally275

depends on the input intensity.276

In the potential energy landscape U (see Methods), where stable fixed points correspond to minima, the bistability277

that emerges for more structured topography m ≥ mcrit = 0.76 can be understood as a transition from a single278

minimum at low rates (Fig. 7c, inset) to a second minimum associated with the high-activity state (Fig. 7c).279

Even though the full dynamics of the spiking network away from the fixed point cannot be entirely understood280

in this simplified potential picture (see Appendix B), qualitatively, more strongly modular networks cause deeper281

potential wells, corresponding to more attractive dynamical states and higher firing rates (see Figure 9 - figure282

supplement 2).283

Because the intensity of the input signal dictates the rate of different populations in the initial sub-network284

SSN0 (Fig. 7d), it also determines, for any given modularity, whether the rate of the stimulated sub-population285

is in the basin of attraction of the high-activity (see Fig. 7e, solid markers and arrows) or low-activity (dashed,286

blue marker and arrow) fixed point. Denoising, and therefore increasing signal reconstruction, is thus achieved287

by successively (across sub-networks) pushing the population states towards the self-consistent firing rates.288

As reported above, for the baseline network and (standard) input (λ = 0.05) used in Fig. 1 and Fig. 2, the289

switching point between low and high activity is at m = 0.83 (blue markers in Fig. 7d, f). Stronger input signals290

move the switching point towards the minimal modularity m = 0.76 of the active regime (black markers in Fig.291

7d, f), while weaker inputs only induce a switch at larger modularities (grey markers in Fig. 7d, f).292

Noise in the input simply shifts the transition point to the high-activity state in a similar manner, with more293

modular connectivity required to compensate for stronger jitter (Fig. 7g). However, as long as the mean firing294

rate of the stimulated sub-population in SSN0 is slightly higher than that of the non-stimulated ones (up to295

0.5 spks/sec), it is sufficient to position the system in the attracting basin of the high rate fixed point and the296

system is able to clean the signal representation. This indicates a remarkably robust denoising mechanism.297

Critical modularity for denoising298

In addition to properties of the input, the critical modularity marking the onset of the active regime is also299

influenced by neuronal and connectivity features. To build some intuition, it is helpful to consider the sigmoidal300

activation function of spiking neurons (Fig. 8a). The nonlinearity of this function prohibits us from obtaining301

quantitative, closed-form analytical expressions for the critical modularity and requires a numerical solution of302

the self-consistency equations (Fig. 7b). However, since the continuous rate model shows a qualitatively similar303

behavior to the spiking baseline model (see Section "A generalizable structural effect"), we can study a fully304

analytically tractable model with piecewise linear activation function (Fig. 8a, b) to expose the dependence of305
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the critical modularity on both neuron and network properties (see detailed derivations in Appendix B).306

In this simple model, the output is zero for inputs below µmin = 15 and at maximum rate νmax = 150307

for inputs above µmax = 400. In between these two bounds, the output is linearly interpolated ν(µ) =308

νmax(µ − µmin)/(µmax − µmin). As discussed before, successful denoising is achieved if the non-stimulated309

sub-populations are silent, νNS = 0, and the stimulated sub-populations are active, νS > 0. Note that in the310

following we focus on this ideal scenario representing perfect denoising, but, in principle, intermediate solutions311

with νS ≫ νNS > 0 may also occur and could still be considered as successful denoising. Analysing for which312

neuron, network and input properties this scenario is achieved, we obtain multiple conditions for the modularity313

that need to be fulfilled.314

The first condition illustrates the dependence of the critical modularity on the neuron model (Fig. 8c, purple315

horizontal line)316

m ≥ (µmax − µmin)NC

(1− α)J νmax + (µmax − µmin)(NC − 1)
, (1)

where NC is the number of stimulus-specific sub-populations and α ≤ 1 (typically with a value of 0.25) represents317

the (reduced) noise ratio in the deeper sub-networks, with α scaling the noise and 1− α scaling the feedforward318

connections (see Methods). This is necessary to ensure that the total excitatory input to each neuron is consistent319

across the network. In particular, the critical modularity depends on the dynamic range of input µmax − µmin320

and output νmax. The condition represents a lower bound on the modularity required for denoising. Importantly,321

while it depends on the effective coupling strength J , the noise ratio α and the number of maps NC (see322

Methods), it does not depend on the nature of the recurrent interactions (E/I ratio) and the strength of the323

external background input. In addition, we find two additional critical values of the modularity (cyan and green324

curves in Fig. 8c-e), both of which do depend on the strength of the external background input νX and the325

recurrent connectivity (E/I ratio γg):326

m =
NC

NC − 1
− 1

NC − 1

(1− α)J νmax

µmax − αJ νX − J
NC

(1 + γg) νmax

(2)

m = 1−

(
µmin − αJ νX − J

NC
(1 + γg) νmax

)
J (1− α)νmax − (NC − 1)

(
µmin − αJ νX − J

NC
(1 + γg) νmax

) (3)

Depending on the external input strength νX, these are either upper or lower bounds. In the denominator of327

these expressions, the total input (recurrent and external) is compared to the limits of the dynamic range of the328

neuron model. The cancellation between recurrent and external inputs in the inhibition-dominated baseline329

model typically yields a total input within the dynamic range of the neuron, such that modularity in feedforward330

connections can decrease the input of the non-stimulated sub-populations to silence them, and increase the331

input of the stimulated sub-populations to support their activity. The competition between the excitatory and332

inhibitory contributions ensures that the total input does not lead to a saturating output activity. Thus, for333

inhibitory recurrence, denoising can be achieved at a moderate level of modularity over a large range of external334

background inputs (shaded black and hatched regions in Fig. 8c), which demonstrates a robust denoising335

mechanism even in the presence of changes in the input environment.336

In contrast, if recurrent connections are absent, strong inhibitory external background input is required to337

counteract the excitatory feedforward input and achieve a denoising scenario (Fig. 8d). Fixed points at non-338

saturated activity νS > 0 are also present for low excitatory external input, but unstable due to the positive339

recurrent feedback. This is because in networks without recurrence, there is no competition between the recurrent340

input and the external and feedforward inputs. As a result, the input to both the stimulated and non-stimulated341

sub-populations is typically high, such that modulation of the feedforward input via topography cannot lead to342

a strong distinction between the pathways as required for denoising. In these networks, one typically observes343

high activity in all populations. A similar behavior can be observed in excitation-dominated networks (Fig. 8e),344

where the inhibitory external background input must be even stronger to compensate the excitatory feedforward345

and recurrent connectivity and reach a stable denoising regime.346

Note that inhibitory external input is not in line with the excitatory nature of external inputs to local circuits347

in the brain and is therefore biologically implausible. One way to achieve denoising in excitation-dominated348

networks for excitatory background inputs would be to shift the dynamic range of the activation function (see349
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Figure 8 - figure supplement 1), which is, however, not consistent with the biophysical properties of real neurons350

(distance between threshold and rest as compared to typical strengths of postsynaptic potentials). In summary,351

we find that recurrent inhibition is crucial to achieve denoising in biologically plausible settings.352

These results on the role of recurrence and external input can be transferred to the behavior of the spiking model.353

While details of the fixed point behavior depend on the specific choice of the activation function, Fig. 8f and354

Fig. 8h show that there is also no denoising regime for the spiking model in case of no or excitation-dominated355

recurrence and a biologically plausible level of external input. Instead, one finds high activity in both stimulated356

and non-stimulated sub-populations, as confirmed by network simulations (Fig. 8g and Fig. 8i). Figure 8 - figure357

supplement 2 further confirms that even reducing the external input to zero does not avoid this high-activity358

state in both stimulated and non-stimulated sub-populations for m < 1.359

non-stimulated

stimulated

non-stimulated

stimulated

No recurrence Excitatory recurrence
Inhibitory 
recurrence

No recurrence Excitatory recurrence

h iTheory TheorySimulation Simulation

Figure 8: Dependence of critical modularity on neuron and connectivity features. (a) Activation
function ν(µ, σ) for leaky integrate-and-fire model as a function of the mean input µ for σ = 1, 10, 50 (black to
gray) and piecewise linear approximation with qualitatively similar shape (red). (b) Bifurcation diagram as in
Fig. 7b, but for piecewise linear activation function shown in inset. Low-activity fixed points at zero rate are
not shown, which is the case throughout for the non-stimulated sub-populations. This panel corresponds to the
cross-section marked by the gray dashed lines in (c), at νX = 12. Likewise, the vertical cyan bar corresponds to
the lower bound on modularity depicted by the cyan curve in (c) for the same value νX = 12. (c) Analytically
derived bounds on modularity (purple line corresponds to Eq. 1, cyan curve to Eq. 2) as a function of external
input for the baseline model with inhibition-dominated recurrent connectivity (g = −12). Shaded regions denote
positions of stable (black) and unstable (red) fixed points with 0 < νS < νmax and νNS = 0. Hatched area represents
region with stable fixed points at saturated rates. Denoising occurs in all areas with stable fixed points (hatched and
black shaded regions). Negative values on the x-axis correspond to inhibitory external background input with rate
|νx|. (d) Same as panel (c) for networks with no recurrent connectivity within the SSNs (green curve defined by
Eq. 3). (e) Same as panel (c), for networks with excitation-dominated connectivity within SSNs (g = −3). (f)
Same as Fig. 7b, obtained through numerical evaluation of the mean-field self-consistent equations for the spiking
model. All non-zero fixed points are stable, with points representing stimulated (circle) and non-stimulated (cross)
populations overlapping. (g) Mean firing rates across the SSNs in the current-based (baseline) model with no
recurrent connections, obtained from 5 seconds of network simulations and averaged over 5 trials. (h, i) Same as (f,
g), for networks with excitation-dominated connectivity.
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Input integration and multi-stability360
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Figure 9: For multiple input streams, topography may elicit a wide range of dynamical regimes.
(a) Two active input channels with corresponding stimulus intensities λ1 and λ2, mapped onto non-overlapping
sub-populations, drive the network simultaneously. Throughout this section, λ1 = 0.05 is fixed to the previous
baseline value. (b) Mean firing rates of the two stimulated sub-populations (purple and cyan), as well as the
non-stimulated sub-populations (black) for three different combinations of m and ratios λ2/λ1 (as marked in (c)). (c)
Correlation based similarity score shows three distinct dynamical regimes in SSN5 when considering the firing rates
of two, simultaneously stimulated sub-populations associated with S1 and S2, respectively: coexisting (Co-Ex, red
area), winner-takes-all (WTA, grey) and winnerless competition (WLC, blue). Curves mark the boundaries between
the different regimes (see Methods). Activity for marked parameter combinations shown in (b). (d) Evolution of the
similarity score with increasing network depth, for m = 0.83 and input ratio of 0.86. For deep networks, the Co-Ex
region vanishes and the system converges to either WLC or WTA dynamics. (e) Schematic showing the influence
of modularity and input intensity on the system’s potential energy landscape (see Methods): (1) in the fading
regime there is a single low-activity fixed point (minimum in the potential); (2) increasing modularity creates two
high-activity fixed points associated with S1 and S2, with the dynamics always converging to the same minimum due
to λ1 ≫ λ2; (3) strengthening S2 balances the initial conditions, resulting in frequent, fluctuation-driven switching
between the two states. (4) for larger m values, switching speed decreases as the wells become deeper and the barrier
between the wells wider. (f) Switching frequency between the dominating sub-populations in SSN5 decays with
increasing modularity. Data computed over 10 sec, for λ2/λ1 = 0.9. Figure 9 - figure supplement 1 and Figure 9 -
figure supplement 2 show the evolution of the Co-Ex region over 12 modules and the potential landscape, respectively.

The analysis considered in the sections above is restricted to a system driven with a single external stimulus.361

However, to adequately understand the system’s dynamics, we need to account for the fact that it can be362

concurrently driven by multiple input streams. If two simultaneously active stimuli drive the system (see363

illustration in Fig. 9a), the qualitative behavior where the responses along the stimulated (non-stimulated) maps364

are enhanced (silenced) is retained if the strength of the two input channels is sufficiently different (Fig. 9b, top365

panel). In this case, the weaker stimulus is not strong enough to drive the sub-population it stimulates towards366

the basin of attraction of the high-activity fixed point. Consequently, the sub-population driven by this second367

stimulus behaves as a non-stimulated sub-population and the system remains responsive to only one of the two368

inputs, acting as a winner-takes-all (WTA) circuit. If, however, the ratio of stimulus intensities varies, two active369

sub-populations may co-exist (Fig. 9b, center) and/or compete (bottom panel), depending also on the degree of370

topographic modularity.371

To quantify these variations in macroscopic behavior, we focus on the dynamics of SSN5 and measure the372

similarity (correlation coefficient) between the firing rates of the two stimulus-specific sub-populations as a373

function of modularity and ratio of input intensities λ2/λ1 (see Methods and Fig. 9c). In the case that both374

inputs have similar intensities but the feedforward projections are not sufficiently modular, both sub-populations375

are activated simultaneously (Co-Ex, red area in Fig. 9c). This is the dynamical regime that dominates the376

earlier sub-networks. However, this is a transient state, and the Co-Ex region gradually shrinks with network377

depth until it vanishes completely after approximately 9-10 SSNs (see Fig. 9d).378
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For low modularity, the system settles in the single stable state associated with near-zero firing rates, as illustrated379

schematically in the energy landscape in Fig. 9e (1) (see Methods, Appendix B and Supplementary Materials380

for derivations and numerical simulations). Above the critical modularity value, the system enters one of two381

different regimes. For m > 0.84 and an input ratio below 0.7 (Fig. 9c, grey area), one stimulus dominates382

(WTA) and the responses in the two populations are uncorrelated (Fig. 9b, top panel). Although the potential383

landscape contains two minima corresponding to either population being active, the system always settles in the384

high-activity attractor state corresponding to the dominating input (Fig. 9e, (2)).385

If, however, the two inputs have comparable intensities and the topographic projections are sharp enough386

(m > 0.84), the system transitions into a different dynamical state where neither stimulus-specific sub-population387

can maintain an elevated firing rate for extended periods of time. In the extreme case of nearly identical388

intensities (λ2/λ1 ≥ 0.9) and high modularity, the responses become anti-correlated (Fig. 9b, bottom panel),389

i.e. the activation of the two stimulus-specific sub-populations switches, as they engage in a dynamic behavior390

reminiscent of winnerless competition (WLC) between multiple neuronal groups [42, 24]. The switching between391

the two states is driven by stochastic fluctuations (Fig. 9e, (3)). The depth of the wells and width of barrier392

(distance between fixed points) increase with modularity (see Fig. 9e, (4) and Figure 9 - figure supplement393

2), suggesting a greater difficulty in moving between the two attractors and consequently fewer state changes.394

Numerical simulations confirm this slowdown in switching (Fig. 9f).395

We wish to emphasize that the different dynamical states arise primarily from the feedforward connectivity396

profile. Nevertheless, even though the synaptic weights are not directly modified, varying the topographic397

modularity does translate to a modification of the effective connectivity weights (Fig. 3b). The ratio of stimulus398

intensities also plays a role in determining the dynamics, but there is a (narrow) range (approximately between399

0.75 and 0.8) for which all 3 regions can be reached through sole modification of the modularity. Together, these400

results demonstrate that topography can not only lead to spatial denoising but also enable various, functionally401

important network operating points.402

Reconstruction and denoising of dynamical inputs403

Until now, we have considered continuous but piecewise constant, step signals, with each step lasting for a404

relatively long and fixed period of 200 ms. This may give the impression that the denoising effects we report only405

works for static or slowly changing inputs, whereas naturalistic stimuli are continuously varying. Nevertheless,406

sensory perception across modalities relies on varying degrees of temporal and spatial discretization [43], with407

individual (sub-)features of the input encoded by specific (sub-)populations of neurons in the early stages of the408

sensory hierarchy. In this section, we will demonstrate that denoising is robust to the temporal properties of the409

input and its encoding, as we relax many of the assumptions made in previous sections.410

We consider a sinusoidal input signal, which we discretize and map onto the network according to the depiction411

in Fig. 10a. This approach is similar to previous works, for instance it can mimic the movement of a light412

spot across the retina [44]. By varying the sampling interval dt and number of channels k, we can change the413

coarseness of the discretization from step-like signals to more continuous approximations of the input. If we414

choose a high sampling rate (dt = 1 ms) and sufficient channels (k = 40), we can accurately encode even fast415

changing signals (Fig. 10b). Given that each input-driven SSN is inhibition-dominated and therefore close to416

the balanced state, the network exhibits a fast tracking property [45] and can accurately represent and denoise417

the underlying continuous signal in the spiking activity (Fig. 10c, top). This is also captured by the readout,418

with the tracking precision increasing with network depth (Fig. 10c, bottom). In this condition, there is a419

performance gain of up to 50% in the noiseless case (Fig. 10d, top) and similar values for varying levels of noise420

(Fig. 10d, bottom).421

Note that due to the increased number of input channels (40 compared to 10) projecting to the same number422

of neurons in SSN0 as before (800), for the same σξ the effective amount of noise each neuron receives is, on423

average, four times larger than in the baseline network. Moreover, the task was made more difficult by the424

significant overlap between the maps (NC = 20) as well as the resulting decrease in neuronal input selectivity.425

Nevertheless, similar results were obtained for slower and more coarsely sampled signals (Fig. 10e-g).426

We found comparable denoising dynamics for a large range of parameter combinations involving the map size,427

number of maps, number of channels and signal complexity. Although there are limits with respect to the428

frequencies (and noise intensity) the network can track (see Figure 10 - figure supplement 1), these findings429

indicate a very robust and flexible phenomenon for denoising spatially encoded sensory stimuli.430
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Figure 10: Reconstruction of a dynamic, continuous input signal. (a) Sketch of the encoding and mapping
of a sinusoidal input x(t) onto the current-based network model. The signal is sampled at regular time intervals dt,
with each sample binned into one of k channels (which is then active for a duration of dt). This yields a temporally
and spatially discretized k-dimensional binary signal u(t), from which we obtain the final noisy input z(t) similarly
to the baseline network (see Fig. 1 and Methods). Unlike the one-to-one mapping in Fig. 1, here we decouple the
number of channels k = 40 from that of topographic maps, NC = 20 (map size is unchanged, Ci = 800). Because
NC < k, the channels project to evenly spaced but overlapping sub-populations in SSN0, while the maps themselves
overlap significantly. (b) Discretized signal z(t) and rate encoding for input x(t) = sin(10t)+ cos(3t), with dt = 1 ms
and no noise (σξ = 0). (c) Top panel shows the spiking activity of 500 randomly chosen excitatory (blue) and
inhibitory (red) neurons in SSN0, SSN2 and SSN5, for m = 0.9. Corresponding target signal x(t) (black) and readout
output (red) are shown in bottom panel. (d) Relative gain in performance in SSN2 and SSN5 for σξ = 0 (top). Color
shade denotes network depth. Bottom panel shows relative gain in SSN5 for different levels of noise σξ ∈ {0, 0.5, 1}.
(e-g) Same as (b-d), but for a slowly varying signal (sampled at dt = 20 ms), σξ = 0.5 and m = 1. Performance
results are averaged across five trials. We used 20 seconds of data for training and 10 seconds for testing (activity
sampled every 1 ms, irrespective of input discretization dt).

Discussion431

The presence of stimulus- or feature-tuned sub-populations of neurons in primary sensory cortices (as well as in432

downstream areas) provides an efficient spatial encoding strategy [46, 47, 48] that ensures the relevant computable433

features are accurately represented. Here, we propose that beyond primary sensory areas, modular topographic434

projections play a key role in preserving accurate representations of sensory inputs across many processing435

modules. Acting as a structural scaffold for a sequential denoising mechanism, we show how they simultaneously436

enhance relevant stimulus features and remove noisy interference. We demonstrate this phenomenon in a variety437

of network models and provide a theoretical analysis that indicates its robustness and generality.438

When reconstructing a spatially encoded input signal corrupted by noise in a network of sequentially connected439

populations, we find that a convergent structure in the feedforward projections is not only critical for successfully440

solving the task, but that the performance increases significantly with network depth beyond a certain modularity441

(Fig. 1). Through this mechanism, the response selectivity of the stimulated sub-populations is sharpened within442

each subsequent sub-network, while others are silenced (Fig. 2). Such wiring may support efficient and robust443

information transmission from the thalamus to deeper cortical centers, retaining faithful representations even in444

the presence of strong noise. We demonstrate that this holds for a variety of signals, from approximately static445

(stepwise) to smoothly and rapidly changing dynamic inputs (Fig. 10). Thanks to the balance of excitation446

and inhibition, the network is able to track spatially encoded signals on very short timescales, and is flexible447

with respect to the level of spatial and temporal discretization. Accurate tracking and denoising requires that448

the encoding is locally static/semi-stationary for only a few tens of milliseconds, which is roughly in line with449

psychophysics studies on the limits of sensory perception [49].450
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More generally, topographic modularity, in conjunction with other top-down processes [50], could provide the451

anatomical substrate for the implementation of a number of behaviorally relevant processes. For example,452

feedforward topographic projections on the visual pathway could contribute, together with various attentional453

control processes, to the widely observed pop-out effect in the later stages of the visual hierarchy [51, 52]. The454

pop-out effect, at its core, assumes that in a given context some neurons exhibit sharper selectivity to their455

preferred stimulus feature than the neighboring regions, which can be achieved through a winner-take-all (WTA)456

mechanism (see Fig. 9 and [53]).457

The WTA behavior underlying the denoising is caused by a re-shaping of the E/I balance across the network (see458

Fig. 3). As the excitatory feedforward projections become more focused, they modulate the system’s effective459

connectivity and thereby the gain on the stimulus-specific pathways, gating or allowing (and even enhancing)460

signal propagation. This change renders the stimulated pathway excitatory in the active regime (see Fig. 7),461

leading to multiple fixed points such as those observed in networks with local recurrent excitation [54, 55]. While462

the high-activity fixed point of such clustered networks is reached over time, in our model it unfolds progressively463

in space, across multiple populations. Importantly, in the range of biologically plausible numbers of cortical areas464

relevant for signal transmission (up to ten for some visual stimuli, see [56, 57]) and intermediate modularity, the465

firing rates remain within experimentally observed limits and do not saturate. The basic principle is similar to466

other approaches that alter the gain on specific pathways to facilitate stimulus propagation, for example through467

stronger synaptic weights [58], stronger nonlinearity [36], tuning of connectivity strength and neuronal thresholds468

[37], via detailed balance of local excitation and inhibition (amplitude gating [59]) or with additional sub-cortical469

structures [60]. Additionally, our model also displays some activity characteristics reported previously, such470

as the response sharpening observed for synfire chains [61] or (almost) linear firing rate propagation [62] (for471

intermediate modularity).472

However, due to the reliance on increasing inhibitory activity at every stage, we speculate that denoising, as473

studied here, would not occur in such a system containing a single, shared inhibitory pool with homogeneous474

connectivity. In this case inhibition would affect all excitatory populations uniformly, with stronger activity475

potentially preventing accurate stimulus transmission from the initial sub-networks. Nevertheless, this problem476

could be alleviated using a more realistic, localized spatial connectivity profile as in [34], or by adding shadow477

pools (groups of inhibitory neurons) for each layer of the network, carefully wired in a recurrent or feedforward478

manner [63, 64, 59]. In such networks with non-random or spatially-dependent connectivity, structured (modular)479

topographic projections onto the inhibitory populations will likely be necessary to maintain stable dynamics and480

attain the appropriate inhibition-dominated regimes (Fig. 3). Alternatively, these could be achieved through481

additional, targeted inputs from other areas (Fig. 4), with feedforward inhibition known to provide a possible482

mechanism for context-dependent gating or selective enhancement of certain stimulus features [65, 31].483

While our findings build on the above results, we here show that the experimentally observed topographic484

maps may serve as a structural denoising mechanism for sensory stimuli. In contrast to most works on signal485

propagation where noise mainly serves to stabilize the dynamics and is typically avoided in the input, here486

the system is driven by a continuous signal severely corrupted by noise. Taking a more functional approach,487

this input is reconstructed using linear combinations of the full network responses, rather than evaluating the488

correlation structure of the activity or relying on precise firing rates. Focusing on the modularity of such maps in489

recurrent spiking networks, our model also differs from previous studies exploring optimal connectivity profiles for490

minimizing information loss in purely feedforward networks [66, 67], also in the context of sequential denoising491

autoencoders [38] and stimulus classification [68], which used simplified neuron models or shallow networks,492

made no distinction between excitatory and inhibitory connections, or relied on specific, trained connection493

patterns (e.g., chosen by the pseudo-inverse model). Although the bistability underlying denoising can, in494

principle, also be achieved in such feedforward or networks without inhibition, our theoretical predictions and495

network simulations indicate that for biologically constrained circuits (i.e., where the background and long-range496

feedforward input is excitatory), inhibitory recurrence is indispensable for the spatial denoising studied here (see497

Section "Critical modularity for denoising"). Recurrent inhibition compensates for the feedforward and external498

excitation, generating competition between the topographic pathways and allowing the populations to rapidly499

track their input.500

Moreover, our findings provide an explanation for how low-intensity stimuli (1-2 spks/sec above background501

activity, see Fig. 2 and Supplementary Materials) could be amplified across the cortex despite significant noise502

corruption, and relies on a generic principle that persists across different network models (Fig. 5) while also503

being robust to variations in the map size (Fig. 6). We demonstrated both the existence of a lower and upper504

(due to increased overlap) bound on their spatial extent for signal transmission, as well as an optimal region for505

which denoising was most pronounced. These results indicate a trade-off between modularity and map size, with506

larger maps sustaining stimulus propagation at lower modularity values, whereas smaller maps must compensate507
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through increased topographic density (see Fig. 6a and Supplementary Materials). In the case of smaller508

maps, progressively enlarging the receptive fields enhanced the denoising effect and improved task performance509

(Fig. 6c), suggesting a functional benefit for the anatomically observed decrease in topographic specificity with510

hierarchical depth [13, 35]. One advantage of such a wiring could be spatial efficiency in the initial stages of511

the sensory hierarchy due to anatomical constraints, for instance the retina or the lateral geniculate nucleus.512

While we get a good qualitative description of how the spatial variation of topographic maps influences the513

system’s computational properties, the numerical values in general are not necessarily representative. Cortical514

maps are highly dynamic and exhibit more complex patterning, making (currently scarce) precise anatomical515

data a prerequisite for more detailed investigations. For instance, despite abundant information on the size of516

receptive fields [35, 69, 70], there is relatively little data on the connectivity between neurons tuned to related517

or different stimulus features across distinct cortical circuits. Should such experiments become feasible in the518

future, our model provides a testable prediction: the projections must be denser (or stronger) between smaller519

maps to allow robust communication whereas for larger maps fewer connections may be sufficient.520

Finally, our model relates topographic connectivity to competition-based network dynamics. For two input521

signals of comparable intensities, moderately structured projections allow both representations to coexist in522

a decodable manner up to a certain network depth, whereas strongly modular connections elicit winnerless523

competition (WLC) like behavior characterized by stochastic switching between the two stimuli (see Fig. 9).524

Computation by switching is a functionally relevant principle [22, 71], which relies on fluctuation- or input-525

driven competition between different metastable (unstable) or stable attractor states. In the model studied526

here, modular topography induced multi-stability (uncertainty) in representations, alternating between two527

stable fixed points corresponding to the two input signals. Structured projections may thus partially explain528

the experimentally observed competition between multiple stimulus representations across the visual pathway529

[72], and is conceptually similar to an attractor-based model of perceptual bistability [73]. Moreover, this530

multi-stability across sub-networks can be "exploited" at any stage by control signals, i.e. additional modulation531

(inihibitory) could suppress one and amplify (bias) another.532

Importantly, all these different dynamical regimes emerge progressively through the hierarchy and are not533

discernible in the initial modules. Previous studies reporting on similar dynamical states have usually considered534

either the synaptic weights as the main control parameter [42, 74, 58] or studied specific architectures with535

clustered connectivity [75, 76, 24]. Our findings suggest that in a hierarchical circuit a similar palette of behaviors536

can be also obtained given appropriate effective connectivity patterns modulated exclusively through modular537

topography. Although we used fixed projections throughout this study, these could also be learned and shaped538

continuously through various forms of synaptic plasticity (see e.g., [77]). To achieve such a variety of dynamics,539

cortical circuits most likely rely on a combination of all these mechanisms, i.e., pre-wired modular connections540

(within and between distant modules) and heterogeneous gain adaptation through plasticity, along with more541

complex processes such as targeted inhibitory gating.542

Overall, our results highlight a novel functional role for topographically structured projection pathways in543

constructing reliable representations from noisy sensory signals, and accurately routing them across the cortical544

circuitry despite the plethora of noise sources along each processing stage.545

Methods546

Network architecture547

We consider a feedforward network architecture where each sub-network (SSN) is a balanced random network [25]548

composed of N = 10000 homogeneous leaky integrate-and-fire neurons, grouped into a population of NE = 0.8N549

excitatory and N I = 0.2N inhibitory units. Within each sub-network, neurons are connected randomly and sparsely, with550

a fixed number of KE = ϵNE local excitatory and KI = ϵN I local inhibitory inputs per neuron. The sub-networks are551

arranged sequentially, i.e. the excitatory neurons Ei in SSNi project to both Ei+1 and Ii+1 populations in the subsequent552

sub-network SSNi+1 (for an illustrative example, see Fig. 1a). There are no inhibitory feedforward projections. Although553

projections between sub-networks have a specific, non-uniform structure (see next section), each neuron in SSNi+1 receives554

the same total number of synapses from the previous SSN, KFF.555

In addition, all neurons receive KX inputs from an external source representing stochastic background noise. For the first556

sub-network, we set KX = KE, as it is commonly assumed that the number of background input synapses modeling local557

and distant cortical input is in the same range as the number of recurrent excitatory connections (see e.g. [25, 78, 79]).558

To ensure that the total excitatory input to each neuron is consistent across the network, we scale KX by a factor of559

α = 0.25 for the deeper SSNs and set KFF = (1− α)KE, resulting in a ratio of 3:1 between the number of feedforward560
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and background synapses.561

Modular feedforward projections562

Within each SSN, each neuron is assigned to one or more of NC sub-populations SP associated with a specific stimulus563

(NC = 10 unless otherwise stated). This is illustrated in Fig. 1a for NC = 2. We choose these sub-populations so as564

to minimize their overlap within each SSNi, and control their effective size Cβ
i = diN

β , β ∈ [E, I], through the scaling565

parameter di ∈ [0, 1]. Depending on the size and number of sub-populations, it is possible that some neurons are not part566

of any or that some neurons belong to multiple such sub-populations (overlap).567

Map size. In what follows, a topographic map refers to the sequence of sub-populations in the different sub-networks568

associated with the same stimulus. To enable a flexible manipulation of the map sizes, we constrain the scaling factor di569

by introducing a step-wise linear increment δ, such that di = d0 + iδ, i ≥ 1. Unless otherwise stated, we set d0 = 0.1 and570

δ = 0. Note that all SPs within a given SSN have the same size. In this study, we will only explore values in the range571

0 ≤ δ ≤ 0.02 to ensure consistent map sizes across the system, i.e., 0 ≤ di ≤ 1 for all SSNi (see constraints in Appendix572

A).573

Modularity. To systematically modify the degree of modular segregation in the topographic projections, we define574

a modularity parameter that determines the relative probability for feedforward connections from a given SP in SSNi575

to target the corresponding SP in SSNi+1. Specifically, we follow [80, 81] and define m = 1 − p0
pc

∈ [0, 1] as the ratio576

of the feedforward projection probabilities between neurons belonging to different SPs (p0) and between neurons on577

the same topographic map (pc). According to the above definition, the feedforward connectivity matrix is random and578

homogeneous (Erdős-Rényi graph) if m = 0 or di = 1 (see Fig. 1a). For m = 1 it is a block-diagonal matrix, where the579

individual SPs overlap only when di > 1/NC. In order to isolate the effects on the network dynamics and computational580

performance attributable exclusively to the topographic structure, the overall density of the feedforward connectivity581

matrix is kept constant at (1− α) ∗ ϵ = 0.075 (see also previous section). We note that, while providing the flexibility to582

implement the variations studied in this manuscript, this formalism has limitations (see Appendix A).583

Neuron and synapse model584

We study networks composed of leaky integrate-and-fire (LIF) neurons with fixed voltage threshold and static synapses585

with exponentially decaying postsynaptic currents or conductances. The sub-threshold membrane potential dynamics of586

such a neuron evolves according to:587

τm
dV (t)

dt
= (Vrest − V (t)) +R

(
IE(t) + II(t) + IX(t)

)
(4)

where τm is the membrane time constant, and RIβ is the total synaptic input from population β ∈ [E, I]. The background588

input IX is assumed to be excitatory and stochastic, modeled as a homogeneous Poisson process with constant rate νX.589

Synaptic weights Jij, representing the efficacy of interaction from presynaptic neuron j to postsynaptic neuron i, are equal590

for all realized connections of a given type, i.e., JEE = JIE = J for excitatory and JEI = JII = gJ for inhibitory synapses.591

All synaptic delays and time constants are equal in this setup. For a complete, tabular description of the models and592

model parameters used throughout this study, see Supplementary Files 1-5.593

Following previous works [15, 79], we choose the intensity of the stochastic input νX and the E-I ratio g such that the first594

two sub-networks operate in a balanced, asynchronous irregular regime when driven solely by background input. This595

is achieved with νX = 12 spikes/s and g = −12, resulting in average firing rates of ∼ 3 spikes/s, coefficient of variation596

(CVISI) in the interval [1.0, 1.5] and Pearson cross-correlation (CC) ≤ 0.01 in SSN0 and SSN1.597

In Section "A generalizable structural effect" we consider two additional systems, a network of LIF neurons with598

conductance-based synapses and a continuous firing rate model. The LIF network is described in detail in [15]. Spike-599

triggered synaptic conductances are modeled as exponential functions, with fixed and equal conduction delays for all600

synapses. Key differences to the current-based model include, in addition to the biologically more plausible synapse601

model, longer synaptic time constants and stronger input (see also [15] and Supplementary File 3 for the numerical values602

of all parameters).603

The continuous rate model contains N = 3000 nonlinear units, the dynamics of which are governed by:604

τx
dx

dt
= −x+ Jr + J inu− brec +

√
2τxσXξ

r = 0.5(1 + tanh (x))
(5)

19



where x represents the activation and r the output of all units, commonly interpreted as the synaptic current variable605

and the firing rate estimate, respectively. The rates ri are obtained by applying the nonlinear transfer function tanh(xi),606

modified here to constrain the rates to the interval [0, 1]. τx = 10 ms is the neuronal time constant, brec is a vector of607

individual neuronal bias terms (i.e. a baseline activation), and J and J in are the recurrent (including feedforward) and608

input weight matrices, respectively. These are constructed in the same manner as for the spiking networks, such that the609

overall connectivity, including the input mapping onto SSN0, is identical for all three models. Input weights are drawn610

from a uniform distribution, while the rest follow a normal distribution. Finally, ξ is a vector of N independent realizations611

of Gaussian white noise with zero mean and variance scaled by σX. The differential equations are integrated numerically,612

using the Euler–Maruyama method with step δt = 1 ms, with specific parameter values given in Supplementary File 5.613

Signal reconstruction task614

We evaluate the system’s ability to recover a simple, continuous step signal from a noisy variation using linear combinations615

of the population responses in the different SSNs [82]. This is equivalent to probing the network’s ability to function as a616

denoising autoencoder [83].617

To generate the NC-dimensional input signal u(t), we randomly draw stimuli from a predefined set S = {S1, S2, ..., SNC}618

and set the corresponding channel to active for a fixed duration of 200 ms (Fig. 1a, left). This binary step signal u(t) is619

also the target signal to be reconstructed. The effective input is obtained by adding a Gaussian white noise process with620

zero mean and variance σ2
ξ to u(t), and scaling the sum with the input rate νin. Rectifying the resulting signal leads to621

the final form of the continuous input signal z(t) = [νin(u(t) + ξ(t))]+. This allows us to control the amount of noise in622

the input, and thus the task difficulty, through a single parameter σξ.623

To deliver the input to the circuit, the analog signal z(t) is converted into spike trains, with its amplitude serving as624

the rate of an inhomogeneous Poisson process generating independent spike trains. We set the scaling amplitude to625

νin = KEλνX, modelling stochastic input with fixed rate λνX from KE = 800 neurons. If not otherwise specified, λ = 0.05626

holds, resulting in a mean firing rate below 8 spks/sec in SSN0 (see Fig. 2c).627

Each input channel k is mapped onto one of the NC stimulus-specific sub-populations of excitatory and inhibitory neurons628

in the first (input) sub-network SSN0, chosen according to the procedure described above (see also Fig. 1a). This way,629

each stimulus Sk is mapped onto a specific set of sub-populations in the different sub-networks, i.e., the topographic map630

associated with Sk.631

For each stimulus in the sequence, we sample the responses of the excitatory population in each SSNi at fixed time632

points (once every ms) relative to stimulus onset. We record from the membrane potentials Vm as they represent a633

parameter-free and direct measure of the population state [84, 85]. The activity vectors are then gathered in a state634

matrix XSSNi ∈ RNE×T , which is then used to train a linear readout to approximate the target output of the task [86].635

We divide the input data, containing a total of 100 stimulus presentations (yielding T = 20000 samples), into a training636

and a testing set (80/20 %), and perform the training using ridge regression (L2 regularization), with the regularization637

parameter chosen by leave-one-out cross-validation on the training dataset.638

Reconstruction performance is measured using the normalized root mean squared error (NRMSE). For this particular639

task, the effective delay in the build-up of optimal stimulus representations varies greatly across the sub-networks. In640

order to close in on the optimal delay for each SSNi, we train the state matrix XSSNi on a larger interval of delays and641

choose the one that minimizes the error, averaged across multiple trials.642

In Section "Reconstruction and denoising of dynamical inputs", we generalize the input to a sinusoidal signal x(t) =643

sin(a · t) + cos(b · t), with parameters a and b. From this, we obtain u(t) through the sampling and discretization process644

described in the respective section, and compute the final input z(t) = [νin(u(t) + ξ(t))]+ as above.645

Effective connectivity and stability analysis646

To better understand the role of structural variations on the network’s dynamics, we determine the network’s effective647

connectivity matrix W analytically by linear stability analysis around the system’s stationary working points (see Appendix648

B for the complete derivations). The elements wij ∈ W represent the integrated linear response of a target neuron i, with649

stationary rate νi, to a small perturbation in the input rate νj caused by a spike from presynaptic neuron j. In other650

words, wij measures the average number of additional spikes emitted by a target neuron i in response to a spike from the651

presynaptic neuron j, and its relation to the synaptic weights is defined by [28, 40]:652

20



wij =
∂νi
∂νj

= α̃Jij + β̃J2
ij

with α̃ =
√
π (τmνi)

2 1

σi
(f(yθ)− f(yr))

and β̃ =
√
π (τmνi)

2 1

2σ2
i

(f(yθ)yθ − f(yr)yr) .

(6)

Note that in Fig. 3 we ignore the contribution β̃ resulting from the modulation in the input variance σ2
j which is653

significantly smaller due to the additional factor 1/σi ∼ O(1/
√
N). Importantly, the effective connectivity matrix W654

allows us to gain insights into the stability of the system by eigenvalue decomposition. For large random coupling matrices,655

the effective weight matrix has a spectral radius ρ = maxk (Re{λk}) which is determined by the variances of W [29]. For656

inhibition-dominated systems, such as those we consider, there is a single negative outlier representing the mean effective657

weight, given the eigenvalue λ∗
k associated with the unit vector. The stability of the system is thus uniquely determined658

by the spectral radius ρ: values smaller than unity indicate stable dynamics, whereas ρ > 1 lead to unstable linearized659

dynamics.660

Fixed point analysis661

For the mean-field analysis, the NC sub-populations in each sub-network can be reduced to only two groups of neurons,662

the first one comprising all neurons of the stimulated SPs and the second one comprising all neurons in all non-stimulated663

SPs. This is possible because 1) the firing rates of the excitatory and inhibitory neurons within one SP are identical, owing664

to homogeneous neuron parameters and matching incoming connection statistics, and 2) all neurons in non-stimulated665

SPs have the same rate νNS that is in general different from the rate of the stimulated SP νS. Here we only sketch the666

main steps, with a detailed derivation given in Appendix B.667

The mean inputs to the first sub-network can be obtained via668

µS = (1 + λ)J νx +
1

NC
J (1 + γg) νS +

NC − 1

NC
J (1 + γg) νNS ,

µNS = J νx +
1

NC
J (1 + γg) νS +

NC − 1

NC
J (1 + γg) νNS

(7)

where γ = KI/KE and J = τmKEJ . Both equations are of the form669

κν = µ− I (8)

where κ is the effective self-coupling of a group of neurons with rate ν and input µ, and I denotes the external inputs from670

other groups. Equation (8) describes a linear relationship between the rate ν and the input µ. To find a self-consistent671

solution for the rates νS and νNS, the above equations need to be solved numerically, taking into account in addition the672

f-I curve ν(µ) of the neurons that in the case of leaky integrate-and-fire model neurons also depends on the variance σ2 of673

inputs. The latter can be obtained analogous to the mean input µ (see Appendix B). Note that for general nonlinearity674

ν(µ) there is no analytical closed-form solution for the fixed points.675

Starting from SSN1, networks are connected in a fixed pattern such that the rate νi in SSNi also depends on the excitatory676

input from the previous sub-network SSNi−1 with rate νi−1. For a fixed point, we have νi = νi−1 [36]. In this case, we677

can effectively group together stimulated/non-stimulated neurons in successive sub-networks and re-group equations for678

the mean input in the limit of many sub-networks, obtaining the simplified description (details see Appendix B)679

µS = αJ νx + κS,S νS + κS,NS νNS (9)

µNS = αJ νx + κNS,S νS + κNS,NS νNS (10)

The scaling terms of the firing rates incorporate the recurrent and feedforward contributions from the stimulated and680

non-stimulated groups of neurons. They depend solely on some fixed parameters of the system, including modularity m681

(see Appendix B). Importantly, Eq. 9 and Eq. 10 have the same linear form as Eq. 8 and can be solved numerically as682

described above. Again, for general nonlinear ν(µ) there is no closed-form analytical solution, but see below for a piecewise683

linear activation function ν(µ). The numerical solutions for fixed points are obtained using the root finding algorithm684

root of the scipy.optimize package [87]. The stability of the fixed points is obtained by inserting the corresponding685

firing rates into the effective connectivity Eq. 6. On the level of stimulated and non-stimulated sub-populations, the686

effective connectivity matrix reads687
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1

τm

(
κS,S(m)α̃(νS) κS,NS(m)α̃(νNS)
κNS,S(m)α̃(νS) κNS,NS(m)α̃(νNS)

)
(11)

from which we obtain the maximum eigenvalue ρ, which for stable fixed points must be smaller than 1.688

The structure of fixed points for the stimulated sub-population (see discussion in "Modularity as a bifurcation parameter")689

can furthermore be intuitively understood by studying the potential landscape of the system. The potential U is thereby690

defined via the conservative force F = − dU
dνS = −νS + ν(µ, σ2) that drives the system towards its fixed points via the691

equation of motion dνS

dt
= F [88, 55, 89]. Note that µ and σ2 are again functions of νS and νNS, where the latter692

is the self-consistent rate of the non-stimulated sub-populations for given rate νS of the stimulated sub-population,693

νNS = νNS(νS) (details see Appendix B).694

Multiple inputs and correlation-based similarity score695

In Fig. 9 we consider two stimuli S1 and S2 to be active simultaneously for 10 s. Let SP1 and SP2 be the two corresponding696

SPs in each sub-network. The firing rate of each SP is estimated from spike counts in time bins of 10 ms and smoothed697

with a Savitzky-Golay filter (length 21 and polynomial order 4). We compute a similarity score based on the correlation698

between these rates, scaled by the ratio of the input intensities λ2/λ1 (with λ1 fixed). This scaling is meant to introduce a699

gradient in the similarity score based on the firing rate differences, ensuring that high (absolute) scores require comparable700

activity levels in addition to strong correlations. To ensure that both stimuli are decodable where appropriate, we set701

the score to 0 when the difference between the rate of SP2 and the non-stimulated SPs was < 1 spks/sec (SP1 had702

significantly higher rates). The curves in Fig. 9c mark the regime boundaries: coexisting (Co-Ex) where score is > 0.1703

(red curve); winnerless competition (WLC) where score is < -0.1 (blue); winner-takes-all (WTA, grey) and where the704

score is in the interval (-0.1, 0.1), and either λ2/λ1 < 0.5 holds or the score is 0. While the Co-Ex region is a dynamical705

regime that only occurs in the initial sub-networks (Fig. 9d), the WTA and WLC regimes persist and can be understood706

again with the help of a potential U , which is in this case a function of the rates of the two SPs (details see Appendix B).707

Numerical simulations and analysis708

All numerical simulations were conducted using the Neural Microcircuit Simulation and Analysis Toolkit (NMSAT) v0.2709

[90], a high-level Python framework for creating, simulating and evaluating complex, spiking neural microcircuits in a710

modular fashion. It builds on the PyNEST interface for NEST [91], which provides the core simulation engine. To ensure711

the reproduction of all the numerical experiments and figures presented in this study, and abide by the recommendations712

proposed in [92], we provide a complete code package that implements project-specific functionality within NMSAT (see713

data availability) using NEST 2.18.0 [93].714
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Supplementary Figures725

a b
SSN0 SSN2 SSN5

Figure 1 - supplement 1: Sequential denoising effect. (a) Reconstruction error (NRMSE) in 3 different sub-
networks as a function of modularity (m) and noise amplitude (σϵ). The points marked in the rightmost panel
correspond to chance-level reconstruction accuracy. (b) Relative reconstruction performance gain in SSN5 compared
to SSN0, expressed as percentage of error decrease.

a b

Figure 2 - supplement 1: Mean-field predictions for the gain in the firing rates of stimulated sub-populations ((a)
νS
3 − νS

2 and (b) νS
5 − νS

4 ), as a function of modularity m and input intensity, scaled by λ (see Methods). Dashed
lines demarcate the transition to positive gain.

Synchrony Irregularity Mean firing rate
b a c 

Figure 5 - supplement 1: Spiking statistics for the conductance-based model: (a) synchrony (Pearson’s correlation
coefficient, computed pairwise over spikes binned into 2 ms bins and averaged across 500 pairs); (b) irregularity
measured as the coefficient of variation (CV); (c) mean firing rate across the excitatory populations. All depicted
statistics were averaged over five simulations, each lasting 5 s, with 10 input stimuli.
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Baseline Fully random Ei - Ii+1 Random E4 - I5
a b c

Figure 4 - supplement 1: Spiking statistics for different feedforward wiring to inhibitory neurons. (a)
Mean firing rates (top panel) and synchrony (Pearson’s correlation coefficient, computed pairwise over spikes binned
into 2 ms bins and averaged across 500 pairs, lower panel) in SSN4 and SSN5, as a function of modularity. (b) Same
as (a), except with random feedforward projections to the inhibitory pools, i.e., m = 0 for all Ei → Ii+1 connections,
i = {0..4}. (c) Same as the baseline network in (a), with m = 0 only for E4 → I5. In addition, each neuron in I5
receives further excitatory background input with intensity ν′

X = νX + ν+
X . Statistics are computed as a function of

the additional rate ν+
X .

b 

Stimulated sub-population (SSN5) Non-stimulated sub-population (SSN5)
a 

d = 0.05 d = 0.2

Figure 6 - supplement 1: Transition point in modularity decreases with larger map sizes. (a) Mean-field
predictions for the stationary firing rates of the stimulated (left) and non-stimulated sub-populations (right) in
SSN5, as a function of modularity (m) and fixed map size (parametrized by d, see Methods) across the modules
(δ = 0). To limit the impact of additional parameters when varying the map sizes (e.g., overlap), the number of
stimulus-specific sub-populations and d where chosen such that every neuron in each population belonged to exactly
one stimulus-specific sub-population (see main text for more details). (b) Predicted firing rates in the stimulated
sub-populations of the different sub-networks, for d = 0.05 (left) and d = 0.2 (right), with δ = 0.
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b a 

Figure 7 - supplement 1: Effective couplings. (a) The effective coupling between stimulated sub-populations,
κS,S increases with modularity, with κ∗ marking the critical transition point between the fading and active regime.
Dashed red line represents this κ∗ value. (b) κS,S (top left panel), κS,NS (top right), κNS,S (bottom left), κNS,NS

(bottom right), as a function of modularity for different values of α and E/I weight ratio g. The parameters used
in this study (blue) yield κS,S > 0 only for large modularity, with the other couplings being negative for all m.
Increasing the signal-to-noise ratio to SSN≥1 (red), i.e., increasing the background external input while reducing the
feedforward connection density (directly coupled, see Methods), destroys bistability (all couplings are negative for all
values of m) and leads to extinction of activity in all sub-populations in the limit of very deep networks. Decreasing
inhibition (green) also creates possible bistability for non-stimulated sub-populations (κNS,NS > 0) such that their
activity might approach a high-activity fixed point, leading to destruction of task performance. Note that in all
panels, the values κ are scaled by 1/J to highlight the transitions around zero (see Eq. 18 in Appendix B)

.

a b cExtended Shifted

Figure 8 - supplement 1: Influence of the activation function’s dynamic range on the bifurcation
behavior in excitation-dominated networks (g = −3, see also Fig. 8e) (a) The baseline dynamic range
[15, 150] is extended to [15, 210] or shifted to [75, 210]. (b) Given that µmax does not enter the lower bound on
the modularity determined by Eq. 3 (green curve), extending the dynamic range (see panel (a)) does not affect
the region of stable fixed points in the parameter space. For positive background input, there are no stable fixed
points, only unstable ones at non-saturated rates for low values of νX, due to excitatory recurrent fluctuations in
the activity. For stronger background input, no fixed points exists where νS > νNS. In this case, the activity of the
non-stimulated populations (non-zero) dominates the recurrent dynamics and denoising can not be achieved. (c)
Shifting the dynamic range altogether (see panel (a)) leads to the emergence of stable fixed points at saturated
rates also for positive external input, but the region in which denoising occurs is still significantly smaller than
for networks with recurrent inhibition (see Fig. 8c). For these values, νNS = 0 is ensured because the total input
to the non-stimulated populations remains below the shifted dynamical range, in contrast to just extending the
dynamic range where even low inputs can lead to non-zero activity. Moreover, the shifted activation function requires
a biologically implausible strength of input for activation. The firing threshold of biological neurons is typically
15− 20mV above the resting membrane potential, which is much less than the shifted µmin. Note that similarly to
Fig. 8, here we plot only the fixed points for νS > 0 and νNS = 0.
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non-stimulated

stimulated

Figure 8 - supplement 2: Firing rates in SSN5 in the absence of external background noise (νX = 0).
(a) Firing rates of stimulated (top) and non-stimulated (bottom) populations obtained from simulations of a network
without any recurrent connections, for different input intensities λ. Successful denoising only occurs for the extreme
case of m = 1, in which case the pathways are completely segregated. Note that the input rate was unchanged,
νin = 12λKE. (b) Same as (a), but for excitatory recurrence (g = −3). Recurrent excitation spreads the input from
the stimulated pathway to non-stimulated neurons. Results shown only for λ = 0.05, with larger values leading to
similar results.

SSN5 SSN11 SSN8 SSN2 SSN0 

Figure 9 - supplement 1: Evolution of similarity score for 12 sub-networks. Correlation-based similarity
score illustrates the three dynamical regimes observed across the different sub-networks, for two input streams:
coexisting (CoEx, red area and positive score), winner-take-all behavior (grey, score near 0) and winnerless competition
(WLC, blue and negative score). As predicted by the mean-field analysis, the CoEx region vanishes with increasing
network depth. The calculation of the similarity score is detailed in Methods. If either stimuli could not be decoded,
we set the score to 0. In SSN11, ’X’ indicates parameter combinations where none of the stimuli could be decoded.
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m = 0.85 m = 0.9 m = 1.0

Figure 9 - supplement 2: Potential landscape for two input streams. For intermediate modularity (m = 0.85,
left and m = 0.9, right), there are two high-activity fixed points (circled cross markers) in addition to the low-activity
one near zero (marker added manually here, as it is not observable due to the larger integration step of 5 spks/sec
used here). If the projections are almost fully modular (m ≈ 1), an additional high-activity fixed point can be
observed for identical νS1 and νS2. In this case, the two stimulated sub-populations can be considered as one larger
population, for which the common κS,S becomes positive, as in the case of a single input stream (see Figure 7 - figure
supplement 1), just for larger m. Grey, anti-diagonal lines represent the one-dimensional sections illustrated in Fig.
9e.
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Figure 10 - supplement 1: Limits of denoising for rapidly changing and noisy dynamical inputs. (a) A
fast changing input signal x(t) = sin(24t) + cos(12t) sampled at dt = 1ms, with no additional noise (σξ = 0). (b)
While portions of the signal can be successfully transmitted and denoised in SSN5, there are significant periods
(steep slopes) where the signal representation is lost. (c) Slower signal x(t) = sin(10t) + cos(3t) with significant
noise corruption (σξ = 2νin). Continuous red curve denotes the input signal u(t). (d) Strong noise in the input leads
to heavy fluctuations in the activity of the deeper populations, corrupting the signal representations.
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Supplementary File 1

A: Model Summary
Populations Multiple modules, each one composed of 1 excitatory and 1 inhibitory sub-population
Topology None
Connectivity Sparse, random recurrent connectivity with random or topographically structured

feed-forward projections (fixed in-degrees)
Neuron Model Leaky integrate-and-fire, fixed voltage threshold, fixed absolute refractory time, no

adaptation
Synapse Model Exponentially decaying postsynaptic currents, static synaptic weights, fixed delays
Plasticity None
Input Stochastic background spikes and inhomogeneous Poisson spikes onto d0N

E excita-
tory and d0N

E inhibitory neurons in SSN0

Measurements Spiking activity, membrane potentials
B: Populations

Name Elements Size
Ei iaf_psc_exp 8000
Ii iaf_psc_exp 2000

C: Neuron Models
Name Leaky integrate-and-fire (LIF) neuron (iaf_psc_exp)
Subthreshold Dynamics if (t > t∗ + τref)

τm
dVi(t)

dt = (Vrest − Vi(t)) +Rm

(
IEi (t) + IIi (t) + IXi (t)

)
else

V (t) = Vreset

Spiking If V (t−) < Vth OR V (t+) ≥ Vth

1. set t∗ = t 2. emit spike with time stamp t∗

D: Synapse Models
Synaptic Transmission

τβ
dIβ

i (t)

dt = −Ii(t) + τβ Îβ
∑

j

∑
k δ(t− tkj )

with postsynaptic potential PSPij(t) = Îβ
Rmτβ
τβ−τm

(
e−t/τβ − e−t/τm

)
Θ(t)

and Heaviside function Θ(t) =

{
1 t ≥ 0
0 else .

The synaptic efficacy (weight) corresponds to the PSP amplitude:

Jβ = ÎβRm
τβ

τβ−τm

([
τm
τβ

] −τm
τm−τβ −

[
τm
τβ

] −τβ
τm−τβ

)
E: Input

Type Target Description
poisson_generator E0, I0 Total rate νX ·KX

poisson_generator Ei, Ii for i > 0 Total rate 0.25 · νX ·KX

inhomogeneous_poisson_generator
E
(k)
0 , I

(k)
0 for Sk ∈ S Inhomogeneous Poisson process

with rate νstim, changing every 200 ms
E

′(j)
0 , I

′(j)
0 for S′

j ∈ S′

F: Measurements
Spiking activity, membrane potentials

Table 1: Tabular description of current-based (baseline) network model after [94].

28



Supplementary File 2

A: Populations
Name Value Description
NE 8000 Excitatory population size in each module
N I 2000 Inhibitory population size in each module

B: Connectivity
Name Value Description
ϵ 0.1 Baseline connection probability
α 0.25 Connection scaling factor for SSNi>0

px
ϵ Connection probability for background noise input in SSN0

αϵ Scaled connection probability for background input in SSNi, i > 0
σi (1− α) ∗ ϵ Fixed density of feed-forward projection matrices
pc (1−m) ∗ p0 Feed-forward connection probability within topographic maps

p0 (1−m) ∗ pc
Feed-forward connection probability between SPs on different topo-
graphic maps

B: Neuron Model
Name Value Description
Cm 250 pF Membrane capacitance
EL −70 mV Resting membrane potential
τm 20 ms Membrane time constant
Vth −55 mV Membrane potential threshold for action-potential firing
Vreset −60 mV Reset potential
τref 2 ms Absolute refractory period

C: Synapse Model
τE 2 ms Synaptic decay time constant for excitatory synapses
τI 2 ms Synaptic decay time constant for inhibitory synapses
d 1.5 ms Synaptic transmission delay
ÎE 32.78 pA Peak excitatory current
ÎI g32.78 pA Peak inhibitory current
JE 0.2 mV EPSP amplitude
JI g0.2 mV IPSP amplitude
g −12 Scaling factor for the inhibitory synapses

Table 2: Summary of all the model parameters for the current-based network. For more details, see [15].
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Supplementary File 3

A: Populations
Name Value Description
NE 8000 Excitatory population size in each module
N I 2000 Excitatory population size in each module

B: Connectivity
Name Value Description
d 1.5 ms Synaptic transmission delay
gE 1nS Excitatory synaptic conductance
gI ggEnS Inhibitory synaptic conductance
g −16 Scaling factor for the inhibitory synapses
ϵ 0.1 Baseline connection probability
α 0.25 Connection scaling factor for SSNi>0

px
ϵ Connection probability for background noise input in SSN0

αϵ Scaled connection probability for background input in SSNi, i > 0
σi (1− α) ∗ ϵ Fixed density of feed-forward projection matrices
pc (1−m) ∗ p0 Feed-forward connection probability within topographic maps

p0 (1−m) ∗ pc
Feed-forward connection probability between SPs on different topo-
graphic maps

B: Neuron Model
Name Value Description
Cm 250 pF Membrane capacitance
EL −70 mV Resting membrane potential
τm 15 ms Membrane time constant
Vth −50 mV Membrane potential threshold for action-potential firing
Vreset −60 mV Reset potential
τref 2 ms Absolute refractory period
gL 16.7nS Leak conductance

C: Synapse Model
τE 5 ms Synaptic decay time constant for excitatory synapses
τI 10 ms Synaptic decay time constant for inhibitory synapses
VE 0 mV Excitatory reversal potential
VI −80 mV Inhibitory reversal potential

Table 3: Parameter values for the conductance-based model.
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Supplementary File 4

A: Model Summary
Populations Multiple modules, each one composed of 1 excitatory and 1 inhibitory sub-population
Topology None
Connectivity Sparse, random recurrent connectivity with modular topographic feed-forward

projections (fixed in-degrees)
Neuron Model Rate neuron with shifted tanh gain function
Synapse Model Delayed rate connection
Plasticity None
Input Uniformly distributed input onto d0N

E excitatory and d0N
E inhibitory neurons in

SSN0

Measurements Unit output (rate)
B: Populations

Name Elements Size
Ei rate neuron 2400
Ii rate neuron 600

C: Neuron Models
Name Rate neuron
Differential equation

τx
dx
dt = −x+Wr +W inu− brec +

√
2τxσXξ

r = 0.5(1 + tanh (x))

D: Input
Type Target Description
random uniform distribution E0, I0 Step signal input to SSN0, changing ev-

ery 200 ms, with amplitude 0.8
Gaussian white noise Ei, Ii for i ∈ {0..5} Intrinsic unit noise

E: Measurements
Unit output (rate)

Table 4: Description of the rate model.
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Supplementary File 5

A: Populations
Name Value Description
NE 2400 Number of excitatory units in each module
N I 600 Number of inhibitory units in each module

B: Connectivity
Name Value Description
d 1 ms Synaptic transmission delay
ϵ 0.2 Baseline connection probability
win ∼ U(0.9, 1.0) Input weights

win ∼ Ntr(0, 1/
√
ϵN) > 0

Recurrent and feed-forward weights drawn from a normal distribu-
tion truncated to positive values

g −6 Scaling factor for the inhibitory synapses
B: Neuron Model

Name Value Description
τ 10 ms Unit time constant
b 1 Bias term
σX 1.5 Scaling term for unit noise

Table 5: Rate model parameters.
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Source data files726

Figure 1 - Source data 1: Code and data for Figure 1 and related supplementary figures.727

Figure 2 - Source data 1: Code and data for Figure 2 and related supplementary figures.728

Figure 3 - Source data 1: Code and data for Figure 3.729

Figure 4 - Source data 1: Code and data for Figure 4 and related supplementary figures.730

Figure 5 - Source data 1: Code and data for Figure 5 and related supplementary figures.731

Figure 6 - Source data 1: Code and data for Figure 6 and related supplementary figures.732

Figure 7 - Source data 1: Code and data for Figure 7 and related supplementary figures.733

Figure 8 - Source data 1: Code and data for Figure 8 and related supplementary figures.734

Figure 9 - Source data 1: Code and data for Figure 9 and related supplementary figures.735

Figure 10 - Source data 1: Code and data for Figure 10 and related supplementary figures.736
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Appendix A: Constraints on feedforward connectivity737

This section expands on the limitations arising from the definitions of topographic modularity and map sizes used in this738

study. By imposing a fixed connection density on the feedforward connection matrices, the projection probabilities between739

neurons tuned to the same (pc) and different (p0) stimuli are uniquely determined by the modularity m and the parameter740

d0 and δ, which control the size of stimulus-specific sub-populations (see Methods). For notational simplicity, here we741

consider the merged excitatory and inhibitory sub-populations tuned to a particular stimulus in a given sub-network742

SSNi, with a total size Ci = CE
i + CI

i .743

Under the constraints applied in this work, the total density of a feedforward adjacency matrix between SSNi and SSNi+1744

can be computed as:745

σi =
pcU

i
c + p0U

i
0

N2
(12)

where U i
0 and U i

c are the number of realizable connections between similarly and differently tuned sub-populations,746

respectively. Since U i
c = N2 − U i

0, we can simplify the notation and focus only on U i
0. We distinguish between the cases747

of non-overlapping and overlapping stimulus-specific sub-populations:748

U i
0 =

{
N2 −NCCiCi+1 if di < 1

NC
NC

NC−1
(N − Ci)(N − Ci+1) if di ≥ 1

NC

,

where each potential synapse is counted only once, regardless of whether the involved neurons belong to any or multiple749

overlapping sub-populations. This ensures consistency with the definitions of the probabilities pc and p0. Alternatively,750

we can express U i
0 as:751

U i
0 =

N2Nstim

Nstim − 1
(1− iδ − d0)(1− (i− 1)δ − d0)

For the case with no overlap, we can derive an additional constraint on the minimum sub-populations size Ci for the752

required density σi to be satisfied, which we define in relation to the total number of sub-populations NC:753

di ≥
√

σi

NC
(13)

The equality holds in the case of m = 1 and all-to-all feedforward connectivity between similarly tuned sub-populations,754

i.e., pc = 1.755
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Appendix B: Mean-field analysis of network dynamics756

For an analytical investigation of the role of topographic modularity on the network dynamics, we used mean field theory757

[39, 40, 41]. Under the assumptions that each neuron receives a large number of small amplitude inputs at every time step,758

the synaptic time constants τs are small compared to the membrane time constant τm, and that the network activity is759

sufficiently asynchronous and irregular, we can make use of theoretical results obtained from the diffusion approximation760

of the LIF neuron model to determine the stationary population dynamics. The equations in this section were partially761

solved using a modified version of the LIF Meanfield Tools library [95].762

Stationary firing rates and fixed points763

In the circumstances described above, the total synaptic input to each neuron can be replaced by a Gaussian white noise764

process (independent across neurons) with mean µ(t) and variance σ2(t). In the stationary state, these quantities, along765

with the firing rates of each afferent, can be well approximated by their constant time average. The stationary firing rate766

of the LIF neuron in response to such input is:767

ν =

(
τref +

√
πτeff

∫ yθ

yr

exp(u2) [1 + erf (u)] du
)−1

(14)

where erf is the error function and the integration limits are defined as yr = (Vreset − µ)/σ + q
2

√
τs/τeff and yθ =768

(θ − µ)/σ + q
2

√
τs/τeff , with q =

√
2|ζ(1/2)| and Riemann zeta function ζ (see [96], eq. 4.33). As we will see below, the769

mean µ and variance σ2 of the input also depend on the stationary firing rate ν, rendering Eq. 14 an implicit equation770

that needs to be solved self-consistently using fixed-point iteration.771

For simplicity, throughout the mean-field analyses we consider perfectly partitioned networks where each neuron belongs772

to exactly one topographic map, that is, to one of the NC stimulus-specific, identically sized sub-populations SP (no773

overlap condition). We denote the firing rate of a neuron in the currently stimulated SP (receiving stimulus input in774

SSN0) in sub-network SSNi by νS
i , and by νNS

i that of neurons not associated with the stimulated pathway. Since the775

firing rates of excitatory and inhibitory neurons are equal (due to identical synaptic time constants and input statistics),776

we can write the constant mean synaptic input to neurons in the input sub-network as777

µS
0 =


noise︷ ︸︸ ︷

KXJXνX +

rec. stimulated︷ ︸︸ ︷
(

1

NC
KEJE +

1

NC
KIJI)ν

S
0 +

rec. non-stimulated︷ ︸︸ ︷
(NC − 1)(

1

NC
KEJE +

1

NC
KIJI)ν

NS
0 +

stimulus︷ ︸︸ ︷
JXνin

 τm

µNS
0 =


noise︷ ︸︸ ︷

KXJXνX +

rec. stimulated︷ ︸︸ ︷
(

1

NC
KEJE +

1

NC
KIJI)ν

S
0 +

rec. non-stimulated︷ ︸︸ ︷
(NC − 1)(

1

NC
KEJE +

1

NC
KIJI)ν

NS
0

 τm,

(15)

The variances (σS
0 )

2 and (σNS
0 )2 can be obtained by squaring each weight J in the above equation. To derive these778

equations for the deeper sub-networks SSNi>0, it is helpful to include auxiliary variables KS and KNS, representing the779

number of feed-forward inputs to a neuron in SSNi from its own SP in SSNi−1, and from one different SP (there are780

NC − 1 such sub-populations), respectively. Both KS and KNS are uniquely defined by the modularity m and projection781

density d, and KNS = (1−m)KS = (1−m)(1− α)KE holds as well. The mean synaptic inputs to the neurons in the782

deeper sub-networks can thus be written as:783
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µS
i =


noise︷ ︸︸ ︷

αKXJXνX +

rec. stimulated︷ ︸︸ ︷
(

1

NC
KEJE +

1

NC
KIJI)ν

S
i

+

rec. non-stimulated︷ ︸︸ ︷
(NC − 1)(

1

NC
KEJE +

1

NC
KIJI)ν

NS
i

+

stimulated FF︷ ︸︸ ︷
KSJEν

S
i−1 +

non-stimulated FF︷ ︸︸ ︷
(NC − 1)KNSJEν

NS
i−1

 τm

µNS
i =


noise︷ ︸︸ ︷

αKXJXνX +

rec. stimulated︷ ︸︸ ︷
(

1

NC
KEJE +

1

NC
KIJI)ν

S
i

+

rec. non-stimulated︷ ︸︸ ︷
(NC − 1)(

1

NC
KEJE +

1

NC
KIJI)ν

NS
i

+KNSJEν
S
1 + ((NC − 2)KNS +KS)JEν

NS
i−1

)
τm

(16)

Again, one can obtain the variances by squaring each weight J . The stationary firing rates for the stimulated and784

non-stimulated sub-populations in all sub-networks are then found by first solving Eq. 15 and Eq. 14 for the first785

sub-network and then Eq. 16 and Eq. 14 successively for deeper sub-networks.786

For very deep networks, one can ask the question, whether firing rates approach fixed points across sub-networks. If787

there are multiple fixed points, the initial condition, that is the externally stimulated activity of sub-populations in the788

first sub-network, decides in which of the fixed points the rates evolve, in a similar spirit as in recurrent networks after a789

start-up transient. For a fixed point, we have νi−1 = νi. In effect, we can re-group terms in Eq. 16 that have the same790

rates such that formally we obtain an effective new group of neurons from the excitatory and inhibitory SPs of the current791

sub-network and the corresponding excitatory SPs of the previous sub-network, as indicated by the square brackets in the792

following formulas:793

µS = αβJ νX + J
[

1

NC
(1 + γg) + (1− α)

1

(NC − 1)(1−m) + 1

]
︸ ︷︷ ︸

κS,S

νS (17)

+ J
[
NC − 1

NC
(1 + γg) + (1− α)

(NC − 1)(1−m)

(NC − 1)(1−m) + 1

]
︸ ︷︷ ︸

κS,NS

νNS

µNS = αβJ νX + J
[

1

NC
(1 + γg) + (1− α)

(1−m)

(NC − 1)(1−m) + 1

]
︸ ︷︷ ︸

κNS,S

νS (18)

+ J
[
NC − 1

NC
(1 + γg) + (1− α)

1 + (NC − 2)(1−m)

(NC − 1)(1−m) + 1

]
︸ ︷︷ ︸

κNS,NS

νNS

with β = KX/KE, γ = KI/KE and J = τKEJ .794

For the parameters g and γ chosen here, κS,NS, κNS,S and κNS,NS in Eq. 17 and Eq. 18 are always negative for any795

modularity m due to the large recurrent inhibition. Therefore, for the non-stimulated group, κ < 0 in Eq. 8 (see main796

text), such that one always finds a single fixed point, which, as desired, is at a low rate. Interestingly, the excitatory797

feed-forward connections can switch the sign of κS,S from negative to positive for large values of m, thereby rendering the798

active group effectively excitatory, leading to a saddle-node bifurcation and the emergence of a stable high-activity fixed799

point (see Fig. 7b in the main text).800

The structure of fixed points can also be understood by studying the potential landscape of the system: Eq. 14 can801

be regarded as the fixed-point solution of the following evolution equations for the stimulated and non-stimulated802

sub-populations [88, 89]803
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τS
dνS

dt
= −νS +ΦS(ν

S, νNS) , (19)

τNS
dνNS

dt
= −νNS +ΦNS(ν

S, νNS) , (20)

where ΦS and ΦNS are defined via the right-hand side of Eq. 14 with µS and µNS inserted as defined in Eq. 17 and804

Eq. 18 (and likewise for σS and σNS). Due to the asymmetry in connections between stimulated and non-stimulated805

sub-populations, the right-hand side of Eq. 19 and Eq. 20 cannot be interpreted as a conservative force. Following the806

idea of effective response functions [97], a potential U(νS) for the stimulated sub-population alone can, however, be807

defined by inserting the solution νNS = f(νS) of Eq. 20 into Eq. 19808

τS
dνS

dt
= −νS +ΦS(ν

S, f(νS)) (21)

and interpreting the right-hand side as a conservative force F = − dU
dνS [55]. The potential then follows from integration as809

U(νS)− U(0) =
1

2
(νS)2 −

∫ νS

0

ΦS(ν, f(ν))dν , (22)

where U(0) is an inconsequential constant. We solved the latter integral numerically using the scipy.integrate.trapz810

function of SciPy [87]. The minima and maxima of the resulting potential correspond to locally stable and unstable811

fixed points, respectively. Note that while this single-population potential is useful to study the structure of fixed points,812

the full dynamics of all populations and global stability cannot be straight-forwardly infered from this reduced picture813

[97, 24], here for two reasons : 1. For spiking networks, Eq. 19 and Eq. 20 do not describe the real dynamics of the814

mean activity. Their right hand side only defines the stationary state solution. 2. The global stability of fixed points also815

depends on the time constants of all sub-populations’ mean activities (here τS and τNS), but the temporal dynamics of816

the non-stimulated sub-populations is neglected here.817

Mean-field analysis for two input streams818

In the case of two simultaneously active stimuli (see Section "Input integration and multi-stability"), if the stimulated819

group 1 is in the high-activity state with rate νS1, the second stimulated group 2 will receive an additional non-vanishing820

input of the form821

[
1

NC
(1 + γg) + (1− α)

(1−m)

(NC − 1) (1−m) + 1

]
νS1 < 0, (23)

which is negative for all values of m and can therefore lead to the silencing of group 2. If the stimuli are similarly strong,822

network fluctuations can dynamically switch the roles of the stimulated groups 1 and 2.823

The dynamics and fixed-point structure in deep sub-networks can be studied using a two-dimensional potential landscape824

that is defined via the following evolution equations825

dνS1

dt
= −νS1 +ΦS1(ν

S1, νS2, f(νS1, νS2)) , (24)

dνS2

dt
= −νS2 +ΦS2(ν

S1, νS2, f(νS1, νS2)) , (25)

where f(νS1, νS2) = νNS is the fixed-point of the non-stimulated sub-populations for given rates νS1, νS2 of the two826

stimulated sub-populations, respectively. The functions ΦS1 and ΦS2 are again defined via the right-hand side of Eq. 14827

with inserted µS1, µS2 and µNS that are defined as follows (derivation analogous to the single-input case):828
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µS1 = αJ νX + J
[

1

NC
(1 + γg) + (1− α)

1

(NC − 1)(1−m) + 1

]
︸ ︷︷ ︸

κS1,S1

νS1 (26)

+ J
[

1

NC
(1 + γg) + (1− α)

1−m

(NC − 1)(1−m) + 1

]
︸ ︷︷ ︸

κS1,S2

νS2

+ J
[
NC − 2

NC
(1 + γg) + (1− α)

(NC − 2)(1−m)

(NC − 1)(1−m) + 1

]
︸ ︷︷ ︸

κS1,NS

νNS

µS2 = αJ νX + J
[

1

NC
(1 + γg) + (1− α)

1−m

(NC − 1)(1−m) + 1

]
︸ ︷︷ ︸

κS2,S1

νS1 (27)

+ J
[

1

NC
(1 + γg) + (1− α)

1

(NC − 1)(1−m) + 1

]
︸ ︷︷ ︸

κS2,S2

νS2

+ J
[
NC − 2

NC
(1 + γg) + (1− α)

(NC − 2)(1−m)

(NC − 1)(1−m) + 1

]
︸ ︷︷ ︸

κS1,NS

νNS

µNS = αJ νX + J
[

1

NC
(1 + γg) + (1− α)

(1−m)

(NC − 1)(1−m) + 1

]
︸ ︷︷ ︸

κNS,S1

νS1 (28)

+ J
[

1

NC
(1 + γg) + (1− α)

(1−m)

(NC − 1)(1−m) + 1

]
︸ ︷︷ ︸

κNS,S2

νS2 (29)

+ J
[
NC − 2

NC
(1 + γg) + (1− α)

1 + (NC − 3)(1−m)

(NC − 1)(1−m) + 1

]
︸ ︷︷ ︸

κNS,NS

νNS

Due to the symmetry between the two stimulated sub-populations, the right-hand side of Eq. 24 and Eq. 25 can be829

viewed as a conservative force F of the potential U(νS1, νS2) = −
∫
C F ds, where we parameterized the line integral along830

the path ν : [0, 1] → C, t 7→ t · (νS1, νS2), which yields831

U(νS1, νS2) =
1

2
(νS1)2 +

1

2
(νS2)2 −

∫ νS1

0

ΦS1

(
ν, ν

νS2

νS1
, f(ν, ν

νS2

νS1
)

)
−

∫ νS2

0

ΦS2

(
ν
νS1

νS2
, ν, f(ν

νS1

νS2
, ν)

)
. (30)

The numerical evaluation of this two-dimensional potential is shown in Figure 9 - figure supplement 2, whereas sketches in832

Fig. 9e show a one-dimensional section (grey lines in Figure 9 - figure supplement 2) that goes anti-diagonal through the833

two minima corresponding to one population being in the high-activity state and the other one being in the low-activity834

state.835

Critical modularity for piecewise linear activation function836

To obtain a closed-form analytic solution for the critical modularity, in the following we consider a neuron model with837

piecewise linear activation function838

ν(µ) = νmax
µ− µmin

µmax − µmin
(31)

for µ ∈ [µmin, µmax], ν(µ) = 0 for µ < µmin and ν(µ) = νmax for µ > µmax (Fig. 8a). Successful denoising requires the839

non-stimulated sub-populations to be silent, νNS = 0, and the stimulated sub-populations to be active, νS > 0. We first840

study solutions where 0 < νS < νmax and afterwards the case where νS = νmax. Inserting Eq. 31 into Eq. 9 and Eq. 10,841

we obtain842
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µS = αJ νX + κS,S(m) νmax
µS − µmin

µmax − µmin
,

µNS = αJ νX + κNS,S(m) νmax
µS − µmin

µmax − µmin
.

The first equation can be solved for µS
843

µS

µmin
= 1 +

αJ νX − µmin

µmin − κS,S(m) νmax
µmin

µmax−µmin

, (32)

which holds for844

µmin ≤ µS ≤ µmax , (33)

µNS ≤ µmin . (34)

Requirement (Eq. 33) is equivalent to an inequality for m845

0 ≤ αJ νX − µmin

µmax − J
NC

(1 + γg) νmax − (1−α)J νmax

(NC−1)(1−m)+1
− µmin

≤ 1

that, depending on the dynamic range of the neuron, the strength of the external background input and the recurrence,846

yields847

m =
NC

NC − 1
− 1

NC − 1

(1− α)J νmax

µmax − αJ νX − J
NC

(1 + γg) νmax

(35)

as an upper or lower bound for the modularity (Fig. 8). Requirement (Eq. 34) with the solution (Eq. 32) for µS inserted848

yields a further lower bound849

m ≥ (µmax − µmin)NC

(1− α)J νmax + (µmax − µmin)(NC − 1)
(36)

for the modularity that is required for denoising. This criterion is independent of the external background input and the850

recurrence of the SSN.851

Now we turn to the saturated scenario νS = νmax and νNS = 0 and obtain852

µS = αJ νX + κS,S(m) νmax ,

µNS = αJ νX + κNS,S(m) νmax ,

with the criteria853

µS ≥ µmax , (37)

µNS ≤ µmin . (38)

The first criterion (Eq. 37) yields the same critical value (Eq. 35) that for µmax − αJ νX − J
NC

(1 + γg) νmax ≥ 0 is854

a lower bound and otherwise an upper bound. The second criterion (Eq. 38) yields an additional lower bound for855

J (1− α)νmax − (NC − 1)
(
µmin − αJ νX − J

NC
(1 + γg) νmax

)
≥ 0 (Fig. 8):856
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m ≥ 1−

(
µmin − αJ νX − J

NC
(1 + γg) νmax

)
J (1− α)νmax − (NC − 1)

(
µmin − αJ νX − J

NC
(1 + γg) νmax

) . (39)

The above criteria yield necessary conditions for the existence of a fixed point with νS > 0 and νNS = 0. Next we study857

the stability of such solutions. This works analogous to the stability in the spiking models discussed in Section "Effective858

connectivity and stability analysis" by studying the spectrum of the effective connectivity matrix. For the model Eq. 31,859

the effective connectivity is given by860

wij =
∂νi
∂νj

= ν′(µi)
∂µi

∂νj
= ν′(µi)Jij (40)

with ν′(µ) = dν
dµ

(µ) and Jij = τxJij . On the level of stimulated and non-stimulated sub-populations across layers, the861

effective connectivity becomes862

W =

(
κS,S(m)ν′(µS) κS,NS(m)ν′(µNS)
κNS,S(m)ν′(µS) κNS,NS(m)ν′(µNS)

)
(41)

with eigenvalues863

λ± =
κS,S(m)ν′(µS) + κNS,NS(m)ν′(µNS)

2

±

√(
κS,S(m)ν′(µS) + κNS,NS(m)ν′(µNS)

2

)2

− (κS,S(m)ν′(µS)κNS,NS(m)ν′(µNS)− κS,NS(m)ν′(µNS)κNS,S(m)ν′(µS)) .

(42)

The saturated fixed point νS = νmax and νNS = 0 has ν′(µS) = ν′(µNS) = 0, leading to λ± = 0. This fixed point is864

always stable. The non-saturated fixed point also has ν′(µNS) = 0. Consequently, Eq. 42 simplifies to λ− = 0 and865

λ+ =
νmax

µmax − µmin
κS,S(m) . (43)

For λ > 1 fluctuations in the stimulated sub-population are being amplified. These fluctuations also drive fluctuations of866

the non-stimulated sub-population via the recurrent coupling. The fixed point thus becomes unstable and the necessary867

distinction between the stimulated and non-stimulated sub-populations vanishes. For inhibition-dominated recurrence,868

κS,S(m) is small enough to obtain stable fixed points at non-saturated rates (Fig. 8c). In the case of no recurrence or869

excitation-dominated recurrence, κS,S(m) is much larger, typically driving λ+ across the line of instability and preventing870

non-saturated fixed points to be stable. In such networks, only the saturated fixed point at νS = νmax is stable and871

reachable (Fig. 8d,e).872
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