000943460 001__ 943460
000943460 005__ 20240712113115.0
000943460 0247_ $$2doi$$a10.1002/aenm.202203673
000943460 0247_ $$2ISSN$$a1614-6832
000943460 0247_ $$2ISSN$$a1614-6840
000943460 0247_ $$2Handle$$a2128/34441
000943460 0247_ $$2WOS$$aWOS:000903650200001
000943460 037__ $$aFZJ-2023-01031
000943460 082__ $$a050
000943460 1001_ $$0P:(DE-HGF)0$$aRosenbach, Carolin$$b0$$eFirst author
000943460 245__ $$aVisualizing the Chemical Incompatibility of Halide and Sulfide‐Based Electrolytes in Solid‐State Batteries
000943460 260__ $$aWeinheim$$bWiley-VCH$$c2023
000943460 3367_ $$2DRIVER$$aarticle
000943460 3367_ $$2DataCite$$aOutput Types/Journal article
000943460 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1684308383_28767
000943460 3367_ $$2BibTeX$$aARTICLE
000943460 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000943460 3367_ $$00$$2EndNote$$aJournal Article
000943460 520__ $$aHalide-based solid electrolytes are currently growing in interest in solid-state batteries due to their high electrochemical stability window compared to sulfide electrolytes. However, often a bilayer separator of a sulfide and a halide is used and it is unclear why such setup is necessary, besides the instability of the halides against lithium metal. It is shown that an electrolyte bilayer improves the capacity retention as it suppresses interfacial resistance growth monitored by impedance spectroscopy. By using in-depth analytical characterization of buried interphases by time-of-flight secondary ion mass spectrometry and focused ion beam scanning electron microscopy analyses, an indium-sulfide rich region is detected at the halide and sulfide contact area, visualizing the chemical incompatibility of these two electrolytes. The results highlight the need to consider more than just the electrochemical stability of electrolyte materials, showing that chemical compatibility of all components may be paramount when using halide-based solid electrolytes in solid-state batteries.
000943460 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000943460 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000943460 7001_ $$0P:(DE-HGF)0$$aWalther, Felix$$b1
000943460 7001_ $$0P:(DE-HGF)0$$aRuhl, Justine$$b2
000943460 7001_ $$0P:(DE-HGF)0$$aHartmann, Matthias$$b3
000943460 7001_ $$0P:(DE-Juel1)178901$$aHendriks, Theodoor Anton$$b4$$ufzj
000943460 7001_ $$0P:(DE-HGF)0$$aOhno, Saneyuki$$b5
000943460 7001_ $$0P:(DE-HGF)0$$aJanek, Jürgen$$b6
000943460 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang$$b7$$eCorresponding author
000943460 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.202203673$$gp. 2203673 -$$n6$$p2203673$$tAdvanced energy materials$$v13$$x1614-6832$$y2023
000943460 8564_ $$uhttps://juser.fz-juelich.de/record/943460/files/Advanced%20Energy%20Materials%20-%202022%20-%20Rosenbach%20-%20Visualizing%20the%20Chemical%20Incompatibility%20of%20Halide%20and%20Sulfide%E2%80%90Based.pdf$$yOpenAccess
000943460 8564_ $$uhttps://juser.fz-juelich.de/record/943460/files/revised%20manuscript.pdf$$yOpenAccess
000943460 909CO $$ooai:juser.fz-juelich.de:943460$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000943460 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178901$$aForschungszentrum Jülich$$b4$$kFZJ
000943460 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b7$$kFZJ
000943460 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000943460 9141_ $$y2023
000943460 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
000943460 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000943460 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-12$$wger
000943460 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
000943460 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000943460 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
000943460 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
000943460 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
000943460 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
000943460 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-26
000943460 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-26
000943460 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2022$$d2023-10-26
000943460 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-26
000943460 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-26
000943460 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV ENERGY MATER : 2022$$d2023-10-26
000943460 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000943460 9801_ $$aFullTexts
000943460 980__ $$ajournal
000943460 980__ $$aVDB
000943460 980__ $$aUNRESTRICTED
000943460 980__ $$aI:(DE-Juel1)IEK-12-20141217
000943460 981__ $$aI:(DE-Juel1)IMD-4-20141217