000943461 001__ 943461
000943461 005__ 20240712113115.0
000943461 0247_ $$2doi$$a10.1002/batt.202200544
000943461 0247_ $$2Handle$$a2128/34444
000943461 0247_ $$2WOS$$aWOS:000929056700001
000943461 037__ $$aFZJ-2023-01032
000943461 082__ $$a540
000943461 1001_ $$0P:(DE-Juel1)178901$$aHendriks, Theodoor Anton$$b0$$eFirst author$$ufzj
000943461 245__ $$aBalancing Partial Ionic and Electronic Transport for Optimized Cathode Utilization of High‐voltage $LiMn_2O_4 / Li_3InCl_6$ Solid‐state Batteries
000943461 260__ $$aWeinheim$$bWiley-VCH$$c2023
000943461 3367_ $$2DRIVER$$aarticle
000943461 3367_ $$2DataCite$$aOutput Types/Journal article
000943461 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1684318834_28767
000943461 3367_ $$2BibTeX$$aARTICLE
000943461 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000943461 3367_ $$00$$2EndNote$$aJournal Article
000943461 520__ $$aTheir suggested stability towards high-voltage cathode materials makes halide-based solid electrolytes currently an interesting class of ionic conductors for solid-state batteries. Especially the LiMn2O4 spinel cathode active material is of interest due to its slightly higher nominal voltage and more resilience to overcharging compared to LiCoO2 and LiNixMnyCozO2 cathodes. Typically, a standard ratio of active material to solid electrolyte is used in composites for solid-state batteries. However, for ideal transport properties, and thus to achieve balanced and optimal partial-conductivities, this ratio needs to be re-optimized each time the material basis is changed. In this work, we show transport in the composite measured through both DC polarization as well as transmission line modeling of the impedance spectra. By balancing the partial transport parameters of the composite, an optimum capacity of the solid-state batteries is achieved. This work shows characterization and optimization of transport is required for unlocking the full potential of solid-state batteries.
000943461 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000943461 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000943461 7001_ $$0P:(DE-HGF)0$$aLange, Martin$$b1
000943461 7001_ $$0P:(DE-HGF)0$$aKiens, Ellen$$b2
000943461 7001_ $$0P:(DE-HGF)0$$aBaeumer, Christoph$$b3
000943461 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang$$b4$$eCorresponding author$$ufzj
000943461 773__ $$0PERI:(DE-600)2897248-X$$a10.1002/batt.202200544$$gp. batt.202200544$$n4$$pe202200544$$tBatteries & supercaps$$v6$$x2566-6223$$y2023
000943461 8564_ $$uhttps://juser.fz-juelich.de/record/943461/files/Batteries%20Supercaps%20-%202023%20-%20Hendriks%20-%20Balancing%20Partial%20Ionic%20and%20Electronic%20Transport%20for%20Optimized%20Cathode.pdf$$yOpenAccess
000943461 909CO $$ooai:juser.fz-juelich.de:943461$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000943461 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178901$$aForschungszentrum Jülich$$b0$$kFZJ
000943461 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b4$$kFZJ
000943461 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000943461 9141_ $$y2023
000943461 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-23
000943461 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000943461 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-23$$wger
000943461 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-23
000943461 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000943461 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBATTERIES SUPERCAPS : 2022$$d2023-08-25
000943461 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
000943461 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
000943461 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
000943461 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
000943461 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-25
000943461 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBATTERIES SUPERCAPS : 2022$$d2023-08-25
000943461 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000943461 9801_ $$aFullTexts
000943461 980__ $$ajournal
000943461 980__ $$aVDB
000943461 980__ $$aUNRESTRICTED
000943461 980__ $$aI:(DE-Juel1)IEK-12-20141217
000943461 981__ $$aI:(DE-Juel1)IMD-4-20141217