Importance of thermal transport for the design of solid-state battery

materials

Matthias T. Agne¹, Thorben Böger^{1,2}, Tim Bernges¹, Wolfgang G. Zeier^{1,3}

¹Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Münster,

Germany

²International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and

Application (BACCARA), University of Münster, 48149 Münster, Germany

³Institut für Energie- und Klimaforschung (IEK), IEK-12: Helmholtz-Institut Münster,

Forschungszentrum Jülich, 48149 Münster, Germany

Keywords: Thermal transport; Solid state batteries; Solid ionic conductors;

Abstract

Battery technologies have been developed rapidly over the past decade, including the advent of

solid-state batteries. In this time, it has become apparent that thermal management is

paramount to device operation and lifetime. However, the fundamental importance of thermal

properties of materials, such as thermal conductivity, in engineering design and mitigating risk of

catastrophic failure is yet to be fully understood. This Perspective aims to motivate the fields of

thermal transport and ionic transport to join forces to understand heat transport for better

battery design, especially in light of solid-state batteries. From the basic characterization of

thermal conductivity in bulk materials, to considering the full complexity of battery composites

during electrochemical cycling, there are many potential directions for fundamental and applied

investigations. We anticipate that studying heat transport in battery materials will have the

added benefit of extending the design space for other functional devices.

1

Popular Summary

The difficulty to control heat transport in solid-state energy devices, including microelectronics, batteries and thermoelectrics, is often a limiting factor in improving device performance. Especially in batteries, not only can excessive heat cause degradation that leads to a loss of charge capacity over time, but thermal runaway can occur when the battery overheats to catastrophic failure. Thus, understanding heat evolution and thermal transport in batteries is an important step to improving lifetime and safety. It is from this perspective that we motivate the importance of bringing together the fields of thermal transport and battery research, particularly to study solid-state batteries, which epitomize the overall complexity of battery systems and require a state-of-the-art understanding of thermal transport mechanisms. Here, we identify the basic and applied scientific directions that may prove fruitful for the next generation of battery thermal management.

Introduction

The transport of charged particles (electrons and ions) through a material results in the generation of heat due to the various microscopic interactions broadly categorized as resistance. Known as Joule heating, the rate at which electrical energy is converted to thermal energy is proportional to both current and voltage, meaning that "high-rate" and "high-voltage" batteries will inherently generate more heat.(1) Additionally, this thermal energy generated inside the battery will tend to accumulate over time if the rate of heat removal is slower than the rate of production. The intrinsic ability of battery materials to dissipate heat depends on the magnitude of their effective thermal conductivity, where higher thermal conductivity is desirable for faster heat removal. It is also possible to actively cool the battery pack to draw heat out faster, however this additional power consumption increases with the thermal resistance of the battery. Altogether, the thermal management of a battery is necessary to control the operational temperature.(1–4)

Thermal management in lithium-ion batteries, especially as a multi-component and composite system, is complex and challenging. (5, 6) This is irrespective whether a liquid or a solid electrolyte is used, although the rising development of solid-state batteries is expected to bring unique thermal design challenges, especially since they are proposed to achieve high power densities. (7) The large influence of relatively subtle temperature changes on ion transport and interfacial stability makes thermal management an indispensable part of battery design. From an engineering perspective, battery packs on the kilowatt-hour scale in electric vehicles may pose different thermal problems than batteries in mobile devices with energy storage of a few watthours.(8, 9) In any case, accurate thermal properties characterization of the constituent materials is an essential first-step to developing design principles at the battery cell level. Quantifying thermal conductivity relevant to battery design is not a small task, as it requires considerations of the numerous different interfaces and interphases (7, 10), porosity (11), defect concentrations, and ongoing chemical and electrochemical reactions(12, 13) as exemplarily shown for a solidstate battery configuration in Fig. 1a. In addition, on a fundamental level, understanding how atomic vibrations carry heat in battery materials may ultimately provide insights to the vibrational origins of ion transport.(14, 15)

Characterizing thermal properties in these materials is important to model temperature distributions in battery devices (Fig. 1b), towards the goal of optimizing operational conditions.(16, 17) For instance, low temperatures are known to impair the functionality of batteries using liquid electrolytes that can freeze. Higher temperatures increase the kinetics of interfacial reactions, as well as the risk of catastrophic device failure due to thermal runaway in liquid electrolyte cells.(18, 19) Solid-state batteries will also exhibit temperature-dependent chemical and electrochemical degradation kinetics leading to additional interphases that affect performance,(12, 13, 20, 21) and, just recently, thermal runaway of sulfide-based solid-state batteries has been shown at elevated temperatures.(22) Nevertheless, elevated temperatures might be beneficial during charging of a lithium metal anode in solid-state batteries, if the improvements in lithium plating outweigh other detrimental effects.(23–25) For such

engineering optimizations, it is important to understand the temporo-spatial heat distribution during cycling, especially since interfacial resistances can result in significant Joule heating.(1)

In this Perspective, we propose the necessity for multi-disciplinary research directions to advance both fundamental and applied ionics and solid-state battery development from a thermal transport point-of-view. By listing potential research directions, we hope to provide guidance to a new field that explores connections between thermal and ionic transport as well as the magnitude and mechanisms of thermal transport in ionic conductors and solid-state batteries. Given the overwhelming complexity of battery materials and battery systems, we expect this field to push the boundaries of our understanding of atomic vibrations, heat transport, interfaces and interphases, as well as functional materials design. So far, most of these research directions have not yet been thoroughly investigated, and some of their impact may be speculative. Herein, we will summarize some state-of-the-art investigations and identify seemingly logical next steps for (i) the systematic investigation of thermal transport in solid-state battery components and (ii) building up a vibrational perspective of ion transport.

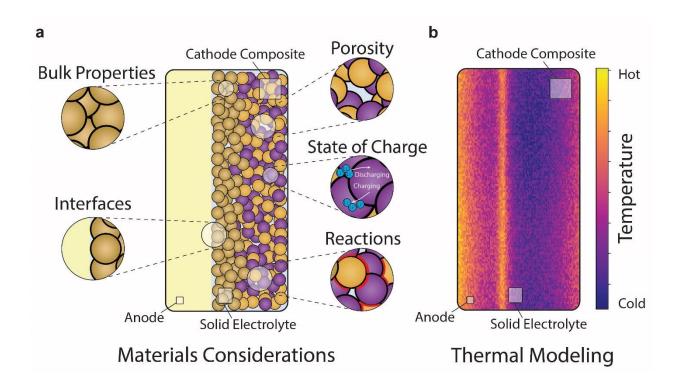


Figure 1: (a) Solid-state battery configuration with a lithium metal anode (pale yellow), a solid ionic conducting separator (beige circles) and a composite cathode (yellow and orange circles) consisting of ionic conductors, cathode active materials and potential additives. A variety of interfaces are highlighted at which heat generation may be expected. (b) Schematic of a potential temperature distribution snap-shot in the solid-state battery (shown in panel a) during operation. The goal of multi-scale materials modeling is to enable reliable calculation of such heat maps to inform device design.

Contemporary Understanding of Thermal Transport

Thermal transport in electronically insulating solids is facilitated by the transfer of vibrational energy between atoms. These vibrations are quantized as phonons, and the theory of phonon thermal transport has been developed for over a century. (26–28) It is now proven that phonons can have different transport character depending on the complexity of the atomic structure and the bonding interactions between atoms (e.g. anharmonicity).(29-31) In structurally simple solids, like most crystalline materials with only a few atoms per unit cell, phonons propagate through the material in a gas-like manner, with a velocity, carrying heat an average distance (called the mean-free-path) before a scattering event (e.g. by point defects, grain boundaries, or by other phonons).(32) These vibrations are associated with a large apparent correlation of atomic motion, and mean-free-paths range from tens of nanometers to tens of microns in single crystal silicon.(33) In amorphous solids and structurally complex crystals, the large number of quasi-degenerate vibrational modes, especially overlapping optical modes, gives rise to an atomic-scale hopping-like transport of vibrational energy that conducts in parallel with gas-like phonon transport.(34) These vibrational modes have been called diffusons (to give a quasiparticle-like name to phonons with this distinct transport character) and appear to have less correlation in atomic displacements, but are still spatially extended modes capable of thermal transport.(35) The so-called phonon "participation ratio" and "mode shape" can be used to categorize phonon vibrations using relative atomic displacement vectors. (36) The character of phonon modes can also be found by analyzing their contribution to the total phonon thermal

conductivity $\kappa_{\rm ph}$, which can be written as the sum of the phonon gas-like ($\kappa_{\rm PGM}$) and diffuson ($\kappa_{\rm diff}$) channels of thermal transport, with $\kappa_{\rm ph}=\kappa_{\rm PGM}+\kappa_{\rm diff}$, respectively.(37) The existence of two-channel transport has been rigorously derived from considerations of the phonon heat flux operator, where gas-like transport is represented by diagonal matrix elements and diffusons by off-diagonal elements.(30, 31, 37)

Operatively, the phonon-gas channel of thermal transport always contributes in the $T \to 0$ K limit, where only long-wavelength acoustic vibrations are thermally excited. The comparatively large group velocities and low degeneracy of the acoustic modes can be used to typify features of the phonon band structure that lead to phonon gas transport (Fig. 2a).(38) Conversely, diffuson transport is expected to be more prominent at high temperatures, especially when the thermal conductivity of solids tends to a constant value.(14, 29, 39) The phonon band structure indicator for diffuson-like vibrational character is a high degree of energetic overlap between phonon modes (Fig. 2a), often with low group velocities (meaning flat energy dispersion) and relatively high anharmonicity. Although both kinds of phonon transport can be present in every material, their relative contributions depend on temperature, complexity of the crystal structure and bonding.

Electronic carriers, when present, can also contribute significantly to thermal transport through the Wiedemann-Franz relation in which a high electronic conductivity leads to a high thermal conductivity, typically found for metals. (40, 41) Although ions certainly carry heat as they move through the host lattice, it does not seem at this point that they contribute appreciably to the total thermal conductivity. (14, 42) Nevertheless, characterizing and understanding thermal transport in solid-state battery materials will certainly necessitate a combined perspective of phonon-gas and diffuson transport, as well as electronic contributions especially when considering so-called "active" materials that participate in the electrochemical reactions.

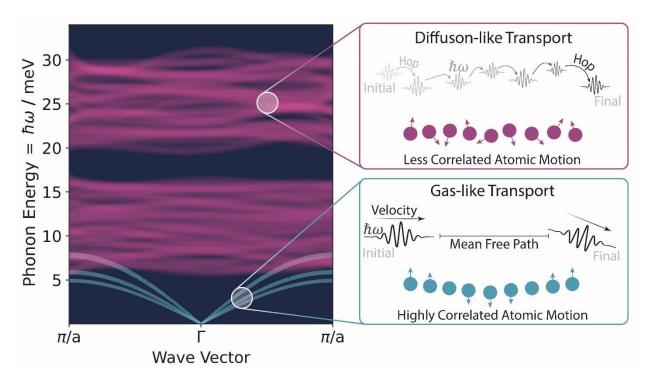


Figure 2: Phonon character and thermal transport behavior. A schematic phonon dispersion in which the acoustic (blue) vibrational modes are highly dispersive and distinct, resulting in gas-like phonon transport of vibrational energy $\hbar\omega$, whereas the optical (pink) vibrational modes have little dispersion and a high degree of (quasi-)degeneracy, which gives rise to diffuson-like hopping transport of vibrational energy $\hbar\omega$ as an atomic scale random walk.

Thermal Conductivity of Battery Materials

All batteries are multiphase composites with inevitably a lot of interfaces. Solid-state batteries, in particular, have distinctive interfaces between the various cell components (solid electrolyte, active material, conductive additive, etc.), as well as with unintended decomposition products (interphases) and pores.(12, 13, 21, 20) Because small particle sizes lead to better composite materials packing (facilitating faster charge/discharge rates) and increase contact surface areas, especially between solid electrolyte and active materials, this also contributes to a higher density of interfaces and evolving interphases.(11, 43) To develop models for thermal management, a systematic approach to characterizing and understanding heat transport is hence needed.(3) We

propose that, first, thermal transport in the "phase pure" individual materials should be investigated, such as the thermal conductivity of single crystals or dense polycrystalline samples. From here, the effects of particle size, porosity, and point defects on thermal conductivity can be systematically studied before advancing to the more challenging work of bringing the individual components together, one-by-one, to assess thermal conduction in complex composites and across interfaces. Such an approach is expected to provide the requisite information for a parameterized model of effective thermal conductivity across a battery cell.

Here, we will review the relatively small body of work that has been done to characterize thermal conductivity in battery materials and discuss some preliminary trends and observations. Given the extensive investigations of thermal transport in semiconductor materials for microelectronics and thermoelectrics applications, it should be noted that solid-state batteries provide an excellent opportunity to apply and develop concepts in thermal engineering for a highly-relevant emerging technology.

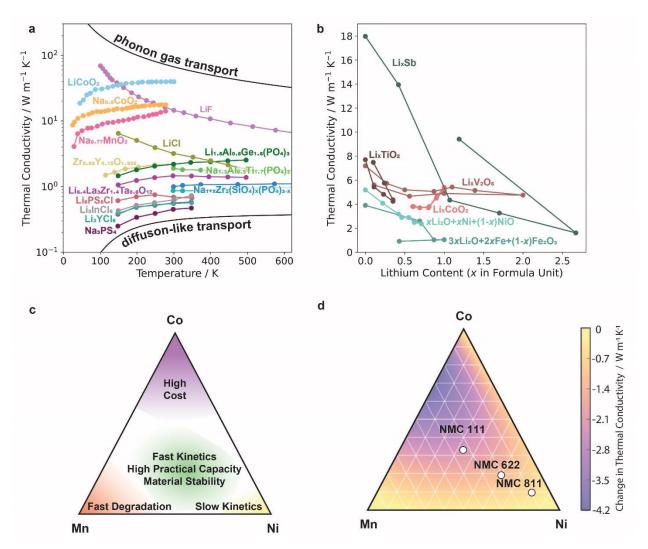


Figure 3: Characterization of thermal transport. (a) The temperature dependence of thermal conductivity for a variety of active materials(44–46) and solid electrolytes(44, 47) reveals that diffuson-like vibrational character may be prevalent. Compared to the thermal conductivity of liquid electrolytes (\sim 0.2 W m $^{-1}$ K $^{-1}$ at 300 K)(44), solid electrolytes may not offer much of an improvement. (b) The state-of-charge dependence of thermal conductivity is due to the changing content of the mobile ion in the active materials(48, 49), the structural changes as well as any additional microstructural effects, which are a potential cause of the hysteretic behavior. (c) The chemical design space for battery materials, illustrated here considering LiNi_xMn_yCo_zO₂ cathode materials, is currently explored for electrochemical performance and cost optimization; however, (d) the magnitude of thermal conductivity is also expected to depend on material composition, as demonstrated here in LiNi_xMn_yCo_zO₂ cathode materials (Figure after reference (46)) with a

constant lithium content. Thus, future battery development needs to include thermal management considerations when thermal properties are characterized.

Thermal transport in solid electrolytes

The flammability, toxicity, and low energy density of organic liquid electrolytes frequently used in state-of-the-art lithium-ion batteries can be mitigated by using solid-state electrolytes. (50, 51) Although their thermal stability is generally superior, it is not yet known if solid electrolytes have thermal conductivities that can provide better thermal management in solid-state batteries, relative to liquid electrolyte cells.

A recent study by Cahill, et al.(44) posited that "good" ion conductors are "bad" thermal conductors, reporting thermal conductivities for several Li⁺ and Na⁺ solid electrolytes below 1 W m⁻¹ K⁻¹ at room temperature (see Fig. 3a). Such low thermal conductivities are in the typical range for glasses and complex thermoelectric materials, and are not much higher than the thermal conductivity of typical liquid electrolytes (~0.2 W m⁻¹ K⁻¹ at room temperature).(44, 52) However, a study directly comparing ionic and thermal conductivity in fast Ag⁺ ion conductors shows no apparent correlation between the magnitude of ionic and thermal conductivity.(14) Nevertheless, the atomic structure (e.g. complex and disordered) and bonding (e.g. soft and anharmonic) conditions associated with fast ion transport(53, 54, 15, 55), are also associated with diffuson thermal transport. In neither case, however, have rigorous structure-property metrics been devised, and it is not known to what extent ionic and thermal transport can be interdependent. Experimentally, the temperature dependence of the thermal conductivity of the studied solid electrolytes is in qualitative agreement with what is theoretically expected for diffuson-dominated transport at high temperature (Fig. 3a).(39)

Other recent work has focused on characterizing phonons in superionic conductors spectroscopically, showing strong anharmonicities and the breakdown of well-defined phonon modes at the onset of superionic conduction. (55, 15, 54) However, no drastic change in thermal transport has been found to coincide with this transition.(54) Thus, it appears that fast ion

transport can affect the appearance of phonons as inferred from inelastic neutron/X-ray scattering experiments, but not necessarily the appearance of phonons from a thermal transport perspective. This apparent inconsistency further motivates the fundamental study of vibrational character and phonon-ion relations.

So far, only initial work has been done to investigate thermal conductivity of solid electrolytes. (44, 50) One reason might be the experimental difficulty due to the strong moisture sensitivity of many Li⁺ and Na⁺ solid electrolyte candidates or that the two fields of thermal transport and ionic transport have yet to link research interest. Computationally, the use of lattice dynamics or molecular dynamics to investigate thermal conductivity in highly defective structures can also be challenging. (56, 57) Another experimental hurdle is the inability to synthesize fully dense samples, leading to effectively lower thermal conductivity values. (58) By systematically investigating the effective thermal conductivity as a function of relative density, in conjunction with effective medium theory analysis, an estimate for the thermal conductivity of the fully dense material can be obtained. (59) We suggest that this methodology be standardized so that results between studies can be compared, especially since relative density and pore distribution is likely a key parameter for device-scale thermal models. We also recognize that measurement errors tend to increase as thermal conductivity decreases, meaning that error estimation should not be forgotten and statistical methods may need to be employed when comparing low thermal conductivity materials. (60)

Overall, there is a possibility that solid electrolytes can provide faster heat dissipation and better battery thermal management than liquid electrolyte cells. However, this will depend largely on the relative magnitude of Joule heating that occurs (predominantly at interfaces) compared with the thermal conductivity of the material and the device design. Initial results suggest that thermal conductivity in solid electrolytes is at least ~2–3 times higher than liquid electrolytes at room temperature, but it is not clear if this is enough of an improvement to mitigate the need for active cooling. (44) Because the solid electrolyte separator layer is designed to be as thin as possible, it may also be that the thermal properties of the solid electrolyte material are more important in

the composite cathode where heat generation can occur due to both high interfacial density and ongoing electrochemical reactions. Nevertheless, the fundamental study of thermal transport in solid electrolyte materials will push our understanding of phonon-ion relations and help shape future solid-state battery designs.

Thermal transport in electrode materials

Batteries are dynamic systems that operate because an electrochemical potential gradient is sustained internally, between the anode and cathode. During operation, the active material at the electrodes can change its thermodynamic state, for instance lithiation and de-lithiation in the case of lithium-ion battery electrodes.(61) Simply, this means that the quantity of lithium atoms is changing continuously in the electrode materials during battery cycling, quantified by the state-of-charge. The different compositions at different states-of-charge can have markedly different thermal conductivities (Fig. 3b).(49, 62, 48) This is expected because, not only is the composition of the material changing during the electrochemical reaction, but also the oxidation state and crystal structure (e.g. local structure and bonding environment).(63, 64) Often, the electrode active materials undergo one or several phase transitions.(65–67) It would be ideal to measure the thermal conductivity of each of these phases independently and in bulk, as suggested for the solid electrolytes, to build a foundation for more complex thermal transport studies.

Preliminary investigations show that hysteresis may be prevalent when measuring thermal conductivity as a function of state-of-charge (Fig. 3b).(49, 48) This may be the result of irreversible reactions or significant changes in microstructure or interphases that result from electrochemical cycling. It should also be noted that electronic conductivity may also contribute significantly to thermal conductivity, with its own state-of-charge dependence.(68, 69) The interplay of a multiplicity of different microstructures in electrode materials, including anisotropy, and, perhaps to a greater extent, the coatings on active materials that aim to prevent strong decomposition reactions add further levels of complexity.(70, 10) Thus, characterizing thermal transport in electrode active materials may be more tedious than in solid electrolytes.

The chemical composition of materials, as well as microstructural defects, are often used to tune thermal conductivity in energy materials like thermoelectrics.(71) Thus, it is interesting to speculate that it may be possible to use the stoichiometry of transition metal oxides (cathode active materials) to simultaneously tune the electrochemical and design requirements of the battery (Fig. 3c), including considerations of the thermal conductivity (Fig. 3d). For example, in the Li(Ni,Co,Mn)O₂ system, Ni-rich and Mn-rich compounds are expected to have the highest thermal conductivity, which further motivates the utilization of cobalt free compositions.(46)

Calculating, measuring and understanding thermal transport as a function of the state-of-charge is a rather new research direction and only limited studies are available so far. (49) Developments in experimental and theoretical methodologies are clearly needed to investigate the complexities of electrode active materials. However, this is an exciting research topic, as it not only leads to a better database for thermal transport modelling, but also because it is possible to truly understand how small changes in a materials composition and chemical state can affect thermal transport in functional materials.

Thermal transport in composites

Just as the thermal transport of anode and cathode active materials will be state-of-charge dependent, so will the heat conduction of solid-state battery cells, which are effectively composites of mixed solid particles (see Fig. 1a). During battery operation, heat generation due to internal resistance (Joule heating), as well as from electrochemical reactions (such as intercalation or phase changes) and chemical reactions (e.g. thermodynamic degradation at interfaces), will need to be dissipated.(72, 12, 21, 20) Thus, understanding thermal transport pathways in complex battery composites is the ultimate engineering goal.

Characterizing thermal transport in battery composites will be no small feat. Already, measuring temperature distributions in battery cells is a highly involved process. (17, 16) Both ex-situ (as a function of state-of-charge) and operando (during electrochemical cycling) measurements of thermal properties have significant practical challenges. Even more so, solid-state batteries often

operate under an external pressure, exacerbating the challenge of measuring thermal conductivities operando. Furthermore, phase transformations (including phase transitions and electrochemical side reactions) during cycling take place, which can have a significant influence on the measurement of thermal diffusivity and heat capacity. (73) Altogether, great care must be taken to estimate thermal conductivity in the presence of interphase formations and the effect of local heating during electrochemical reactions.

The effective thermal conductivity of composites has been understood by considering the bulk thermal conductivity of the constituent materials, weighted by their respective volume fractions, and accounting for the microstructure (particle shape). This approach is broadly categorized as effective medium theory and there are various effective medium models. (74–76) One prevalent model, by Bruggeman, is already widely used to characterize ionic conductivity in solid-state battery composites. (74, 58) Interestingly, recent work (77) suggests that ion transport and thermal transport may not follow the same Bruggeman scaling relation, which is unexpected by the current understanding of effective medium theories. (58) Given that effective transport coefficients for both ionic and thermal transport are necessary for thermo-electro-chemical modeling of batteries, there is a large motivation to understand the limitations of effective medium theories. This can be accomplished through systematic investigation of transport in composites composed of pores and functional materials with a variety of particle shapes and size distributions.

Alternative to effective medium theory, equivalent circuit models for thermal transport have been developed to explain microstructural effects in thermoelectric materials. (78, 79) Here, fundamental investigations of interfacial resistances are motivated. (80–84) Solid electrolyte degradations and interphase formation and growth will alter the thermal conductivity across the interface/interphase of the solid electrolyte and electrode material. Importantly, interfacial resistance and constriction resistances are not explicitly considered in effective medium theory. (85) Using more-detailed physical models can provide immense insight to the role of interfaces in thermal and ionic transport, although it is unclear if such models will be practical to

implement at the scale of a full battery cell. Thus, we propose the development of multi-scale materials models to incorporate thermal transport behaviors from the atomic level, to the microstructural level, up to the system level.(86–88)

Vibrational Perspective of Ion Transport

Having established the large motivation for thermal transport characterization for battery engineering purposes, it is also important to point out the coinciding opportunity to study ion transport from a vibrational perspective. To date, there is no "phonon theory" of ion transport as there is for heat transport. While the so-called jump or diffusion pathway for ions is relatively easy to determine (Fig. 4a), the energetic mechanisms that facilitate transport are not. Thus, the characterization and understanding of atomic vibrations may be equally important to grasp the fundamental physics of ion transport.

Strong discussions exist about vibrational contributions to ion transport, such as the concerted motions of structural motifs facilitating better ionic transport. (89–92) There is some agreement that phonon entropy limits our ability to tune ionic conductivity, but the methodology to calculate this entropy is not settled.(93, 94, 14) Even relatively simple questions, like which attempt frequency should be used in the transition state theory of ion transport, have not really been answered. In this particular case, some believe that one (or a select few) vibrational mode is primarily responsible for ion transport(15, 95, 55) while others consider the possibility that many vibrational modes contribute to transport(14, 54). The former perspective seems to be based on the presence of low-frequency displacive phonon modes (Fig 4b), analogous to those observed in displacive phase transitions. (96, 55) The latter perspective recognizes that many phonon modes contribute to the net ion displacement in the jump direction between adjacent sites (Fig. 4c). (55, 15) In any case, it is possible to consider how many phonons would be needed for a specific vibrational mode to have enough energy to overcome typical ion transition barriers (Fig. 4d). Relative to typical phonon occupations at room temperature (see Bose-Einstein distribution in Fig. 4d) it is clear that a large phonon fluctuation would be needed for any vibrational mode to be responsible for an ion jump leading to net displacement and ionic

transport (the white line in Fig. 4d shows how many phonons are needed to overcome an ion transition barrier of 0.3 eV). Determining which vibrational modes are important to ion transport and how they are occupied is hypothesized to be the key to unlocking new design strategies for ionic conductors. (93, 95)

Overall, it is unclear if ion and thermal transport affect each other, if they are separate phenomena or if phonons are the underlying cause for ionic conduction. Nevertheless, the experimental, analytical and computational methods that have been developed for understanding thermal transport provide a foundation for spectral investigations of atomic vibrations pertaining to ion transport. For example, methods of investigating changes in atomic dynamics due to changes in temperature, pressure, or through phase transitions, may also be applied to study the fundamentals of ion transport in battery materials. While ab initio molecular dynamics simulations have proven useful for validating experimental work, it is tedious to extract spectral information relating vibrations to ion jumps. Lattice dynamics provides spectral information, but does not yet model ion transport. Future work seems needed to truly understand these phenomena and to determine if heat transport or targeted phonon excitation can be used to push ions through a solid.(95)

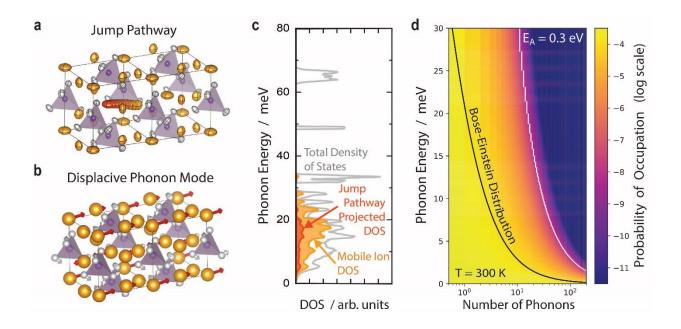


Figure 4. Vibrational understanding of ionic transport. (a) Schematic of the lowest energy pathway for a mobile ion to move between crystallographic sites. (b) A single low-frequency phonon mode where the phonon eigenvectors indicate a displacive motion of the mobile ions along the jump pathway shown in panel a. (c) By analyzing the phonon eigenvectors for all of the mobile ion vibrational modes it is possible to see the spectral density of states of vibrations that contribute to the net motion of the mobile ion along the jump pathway. (d) The Bose-Einstein distribution gives the average number of thermal phonons expected to be populated at a given temperature and vibrational mode energy (frequency), where lower frequency modes have higher average phonon occupations, however the instantaneous occupation of phonons in a vibrational mode is a fluctuating quantity and the probability of a given number of phonons follows a Boltzmann distribution (see the color map). Also shown is the number of phonons that would be required in a given phonon mode to achieve a thermal energy of 0.3 eV, which is a typical activation barrier energy for ion transport in fast ion conductors.

Summary and Outlook

Modeling thermal load and distribution within batteries themselves, and packs on a larger scale, enables engineers to identify and prevent instances of thermal runaway and thermal deterioration of battery material. Charging times and other factors of device performance and lifetime can depend on the temperature of the battery. In general, efficient charging procedures may be developed from a thermal perspective for both liquid electrolyte and solid electrolyte battery cells. This is especially needed considering the current push from liquid-electrolyte-based to solid-state batteries.

For instance, considering the low thermal conductivities measured for many solid electrolytes, significant local heating effects may also be appreciable in solid state batteries. While these can speed up decomposition reactions, kinetically hindered reactions such as metal plating, among others, may benefit from local heating effects. Ultimately, and speculatively, it may be possible to use these heating effects by finding a sweet spot between beneficial and detrimental

influences, for instance by mitigating the need to heat a battery in colder climate during operation. Along this line of thinking, it may be beneficial for the thermal and ionic transport communities to identify a materials-level figure-of-merit (perhaps a dimensionless ratio consisting of the ionic and thermal conductivities or effective conductivities) that aids in the identification of promising materials/microstructures/composites for battery cell development. Tying thermal and ionic transport together, in context of capacity retention, charging/discharging rates, and cell power, is a promising research direction given the complex optimization that is centered around thermal, ionic and electronic transport in batteries.

Optimization of battery performance will require accurate systems-level modeling based on input parameters such as the effective thermal and ionic properties of materials. Those effective properties may be estimated with sufficient accuracy using effective medium approximations. However, identifying the correct effective medium theory will depend on a microscopic understanding of transport processes. Thus, there is tremendous importance of further thermal characterization of active materials and solid ion conductors from a fundamental level towards a multi-scale thermal transport understanding that can be used in conjunction with cell-level ionic transport modeling. (56, 97–100) By studying battery materials, our understanding of thermal transport across interfaces, in composites, and during phase transitions, will be pushed further. The lessons learned here may be applied to other functional devices, such as thermal rectifiers and switches, thermoelectrics, fuel cells, etc. Finally, investigating the role of vibrational modes in ion transport is fundamental to building an understanding of ion transport physics. Future technologies based on ion transport may only be inspired by this understanding.

Acknowledgements

M.T.A. acknowledges the Alexander von Humboldt Foundation for financial support through a Postdoctoral Fellowship. Th.B. is a member of the International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), which is funded by the Ministry for Culture and Science of North Rhine Westphalia, Germany.

References

- 1. Zeng, Y.; Chalise, D.; Lubner, S. D.; Kaur, S.; Prasher, R. S. A review of thermal physics and management inside lithium-ion batteries for high energy density and fast charging. *Energy Storage Mater.* **2021**, *41*, 264–288. DOI: 10.1016/j.ensm.2021.06.008.
- 2. Rao, Z.; Wang, S. A review of power battery thermal energy management. *Renewable Sustainable Energy Rev.* **2011**, *15* (9), 4554–4571. DOI: 10.1016/j.rser.2011.07.096.
- 3. Offer, G.; Patel, Y.; Hales, A.; Bravo Diaz, L.; Marzook, M. Cool metric for lithium-ion batteries could spur progress. *Nature* **2020**, *582* (7813), 485–487. DOI: 10.1038/d41586-020-01813-8.
- Wu, W.; Wang, S.; Wu, W.; Chen, K.; Hong, S.; Lai, Y. A critical review of battery thermal performance and liquid based battery thermal management. *Energy Convers. Manage*.
 2019, 182, 262–281. DOI: 10.1016/j.enconman.2018.12.051.
- 5. Shahjalal, M.; Shams, T.; Islam, M. E.; Alam, W.; Modak, M.; Hossain, S. B.; Ramadesigan, V.; Ahmed, M. R.; Ahmed, H.; Iqbal, A. A review of thermal management for Li-ion batteries: Prospects, challenges, and issues. *J. Energy Storage* **2021**, *39*, 102518. DOI: 10.1016/j.est.2021.102518.
- 6. Bandhauer, T. M.; Garimella, S.; Fuller, T. F. A Critical Review of Thermal Issues in Lithium-Ion Batteries. *J. Electrochem. Soc.* **2011**, *158* (3), R1. DOI: 10.1149/1.3515880.
- 7. Janek, J.; Zeier, W. G. A solid future for battery development. *Nat. Energy* **2016**, *1* (9). DOI: 10.1038/nenergy.2016.141.
- 8. Kim, J.; Oh, J.; Lee, H. Review on battery thermal management system for electric vehicles. *Appl. Therm. Eng.* **2019**, *149*, 192–212. DOI: 10.1016/j.applthermaleng.2018.12.020.
- 9. Henke, M.; Hailu, G. Thermal Management of Stationary Battery Systems: A Literature Review. *Energies* **2020**, *13* (16), 4194. DOI: 10.3390/en13164194.
- Culver, S. P.; Koerver, R.; Zeier, W. G.; Janek, J. On the Functionality of Coatings for Cathode Active Materials in Thiophosphate-Based All-Solid-State Batteries. *Adv. Energy Mater.* 2019, 9 (24), 1900626. DOI: 10.1002/aenm.201900626.

- 11. Minnmann, P.; Quillman, L.; Burkhardt, S.; Richter, F. H.; Janek, J. Editors' Choice—

 Quantifying the Impact of Charge Transport Bottlenecks in Composite Cathodes of All-SolidState Batteries. *J. Electrochem. Soc.* **2021**, *168* (4), 40537. DOI: 10.1149/1945-7111/abf8d7.
- 12. Banerjee, A.; Wang, X.; Fang, C.; Wu, E. A.; Meng, Y. S. Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes. *Chem. Rev.* **2020**, *120* (14), 6878–6933. DOI: 10.1021/acs.chemrev.0c00101.
- 13. Wang, S.; Xu, H.; Li, W.; Dolocan, A.; Manthiram, A. Interfacial Chemistry in Solid-State Batteries: Formation of Interphase and Its Consequences. *J. Am. Chem. Soc.* **2018**, *140* (1), 250–257. DOI: 10.1021/jacs.7b09531.s007.
- 14. Bernges, T.; Hanus, R.; Wankmiller, B.; Imasato, K.; Lin, S.; Ghidiu, M.; Gerlitz, M.; Peterlechner, M.; Graham, S.; Hautier, G.; Pei, Y.; Hansen, M. R.; Wilde, G.; Snyder, G. J.; George, J.; Agne, M. T.; Zeier, W. G. Considering the Role of Ion Transport in Diffuson-Dominated Thermal Conductivity. *Adv. Energy Mater.* 2022, 12 (22), 2200717. DOI: 10.1002/aenm.202200717.
- 15. Gupta, M. K.; Ding, J.; Bansal, D.; Abernathy, D. L.; Ehlers, G.; Osti, N. C.; Zeier, W. G.; Delaire, O. Strongly Anharmonic Phonons and Their Role in Superionic Diffusion and Ultralow Thermal Conductivity of Cu7PSe6. *Adv. Energy Mater.* 2022, 12 (23), 2200596. DOI: 10.1002/aenm.202200596.
- Yu, Y.; Vincent, T.; Sansom, J.; Greenwood, D.; Marco, J. Distributed internal thermal monitoring of lithium ion batteries with fibre sensors. *J. Energy Storage* 2022, *50*, 104291.
 DOI: 10.1016/j.est.2022.104291.
- Robinson, J. B.; Darr, J. A.; Eastwood, D. S.; Hinds, G.; Lee, P. D.; Shearing, P. R.; Taiwo, O.
 O.; Brett, D. J. Non-uniform temperature distribution in Li-ion batteries during discharge A combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach. *J. Power Sources* 2014, 252, 51–57. DOI: 10.1016/j.jpowsour.2013.11.059.
- 18. Edge, J. S.; O'Kane, S.; Prosser, R.; Kirkaldy, N. D.; Patel, A. N.; Hales, A.; Ghosh, A.; Ai, W.; Chen, J.; Yang, J.; Li, S.; Pang, M.-C.; Bravo Diaz, L.; Tomaszewska, A.; Marzook, M. W.;

- Radhakrishnan, K. N.; Wang, H.; Patel, Y.; Wu, B.; Offer, G. J. Lithium ion battery degradation: what you need to know. *Phys. Chem. Chem. Phys.* **2021**, *23* (14), 8200–8221. DOI: 10.1039/D1CP00359C.
- 19. Feng, X.; Ren, D.; He, X.; Ouyang, M. Mitigating Thermal Runaway of Lithium-Ion Batteries. *Joule* **2020**, *4* (4), 743–770. DOI: 10.1016/j.joule.2020.02.010.
- Koerver, R.; Aygün, I.; Leichtweiß, T.; Dietrich, C.; Zhang, W.; Binder, J. O.; Hartmann, P.; Zeier, W. G.; Janek, J. Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes. *Chem. Mater.* 2017, 29 (13), 5574–5582. DOI: 10.1021/acs.chemmater.7b00931.
- 21. Wenzel, S.; Weber, D. A.; Leichtweiss, T.; Busche, M. R.; Sann, J.; Janek, J. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. *Solid State Ionics* 2016, 286, 24–33. DOI: 10.1016/j.ssi.2015.11.034.
- 22. Kim, T.; Kim, K.; Lee, S.; Song, G.; Jung, M. S.; Lee, K. T. Thermal Runaway Behavior of Li6PS5Cl Solid Electrolytes for LiNi0.8Co0.1Mn0.1O2 and LiFePO4 in All-Solid-State Batteries. *Chem. Mater.* **2022**, *34* (20), 9159–9171. DOI: 10.1021/acs.chemmater.2c02106.
- 23. Gao, X.; Zhou, Y.-N.; Han, D.; Zhou, J.; Zhou, D.; Tang, W.; Goodenough, J. B.

 Thermodynamic Understanding of Li-Dendrite Formation. *Joule* **2020**, *4* (9), 1864–1879.

 DOI: 10.1016/j.joule.2020.06.016.
- 24. Krauskopf, T.; Richter, F. H.; Zeier, W. G.; Janek, J. Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries. *Chem. Rev.* **2020**, *120* (15), 7745–7794. DOI: 10.1021/acs.chemrev.0c00431.
- 25. Johnson, N.; Albertus, P. Modeling Thermal Behavior and Safety of Large Format All-Solid-State Lithium Metal Batteries under Thermal Ramp and Short Circuit Conditions. *J. Electrochem. Soc.* **2022**, *169* (6), 60546. DOI: 10.1149/1945-7111/ac79cf.
- 26. Frenkel, J. I. Wave Mechanics: Elementary Theory; Clarendon Press, 1932.

- 27. Ziman, J. M. *Electrons and phonons: The theory of transport phenomena in solids,* Repr; Oxford classic texts in the physical sciences; Clarendon Press, 2007.
- 28. Peierls, R. E. *Quantum theory of solids*, [Neuausg.]; Oxford classic texts in the physical sciences; Clarendon Press, 1955.
- 29. Hanus, R. C.; George, J.; Wood, M.; Bonkowski, A.; Cheng, Y.; Abernathy, D. L.; Manley, M. E.; Hautier, G.; Snyder, G. J.; Hermann, R. P. Uncovering design principles for amorphous-like heat conduction using two-channel lattice dynamics. *Mater. Today Phys.* **2021**, *18*, 100344. DOI: 10.1016/j.mtphys.2021.100344.
- 30. Simoncelli, M.; Marzari, N.; Mauri, F. Unified theory of thermal transport in crystals and glasses. *Nat. Phys.* **2019**, *15* (8), 809–813. DOI: 10.1038/s41567-019-0520-x.
- 31. Isaeva, L.; Barbalinardo, G.; Donadio, D.; Baroni, S. Modeling heat transport in crystals and glasses from a unified lattice-dynamical approach. *Nat. Commun.* **2019**, *10* (1), 3853. DOI: 10.1038/s41467-019-11572-4.
- Cahill, D. G.; Braun, P. V.; Chen, G.; Clarke, D. R.; Fan, S.; Goodson, K. E.; Keblinski, P.; King, W. P.; Mahan, G. D.; Majumdar, A.; Maris, H. J.; Phillpot, S. R.; Pop, E.; Shi, L. Nanoscale thermal transport. II. 2003–2012. *Appl. Phys. Rev.* 2014, 1 (1), 11305. DOI: 10.1063/1.4832615.
- 33. Jiang, P.; Lindsay, L.; Koh, Y. K. Role of low-energy phonons with mean-free-paths >0.8 μm in heat conduction in silicon. *J. Appl. Phys.* 2016, 119 (24), 245705. DOI: 10.1063/1.4954674.
- 34. DeAngelis, F.; Muraleedharan, M. G.; Moon, J.; Seyf, H. R.; Minnich, A. J.; McGaughey, A. J. H.; Henry, A. Thermal Transport in Disordered Materials. *Nanoscale Microscale Thermophys. Eng.* **2019**, *23* (2), 81–116. DOI: 10.1080/15567265.2018.1519004.
- 35. Allen, P. B.; Feldman, J. L.; Fabian, J.; Wooten, F. Diffusons, locons and propagons:

 Character of atomic vibrations in amorphous Si. *Philos. Mag. B* **1999,** *79* (11-12), 1715–1731. DOI: 10.1080/13642819908223054.

- 36. Seyf, H. R.; Henry, A. A method for distinguishing between propagons, diffusions, and locons. *J. Appl. Phys.* **2016**, *120* (2), 25101. DOI: 10.1063/1.4955420.
- 37. Hanus, R. C.; Gurunathan, R.; Lindsay, L.; Agne, M. T.; Shi, J.; Graham, S.; Synder, J. G. Thermal transport in defective and disordered materials. *Appl. Phys. Rev.* **2021**, *8* (3), 31311.
- 38. Toberer, E. S.; Zevalkink, A.; Snyder, G. J. Phonon engineering through crystal chemistry. *J. Mater. Chem.* **2011**, *21* (40), 15843. DOI: 10.1039/c1jm11754h.
- 39. Agne, M. T.; Hanus, R. C.; Snyder, G. J. Minimum thermal conductivity in the context of diffuson-mediated thermal transport. *Energy Environ. Sci.* **2018**, *11* (3), 609–616. DOI: 10.1039/C7EE03256K.
- 40. Franz, R.; Wiedemann, G. Ueber die Wärme-Leitungsfähigkeit der Metalle. *Ann. Phys. Chem.* **1853**, *165* (8), 497–531. DOI: 10.1002/andp.18531650802.
- 41. Kim, H.-S.; Gibbs, Z. M.; Tang, Y.; Wang, H.; Snyder, G. J. Characterization of Lorenz number with Seebeck coefficient measurement. *APL Mater.* **2015**, *3* (4), 41506. DOI: 10.1063/1.4908244.
- 42. Rice, M. J.; Roth, W. L. Ionic transport in super ionic conductors: a theoretical model. *J. Solid State Chem.* **1972**, *4* (2), 294–310. DOI: 10.1016/0022-4596(72)90121-1.
- 43. Miß, V.; Ramanayagam, A.; Roling, B. Which Exchange Current Densities Can Be Achieved in Composite Cathodes of Bulk-Type All-Solid-State Batteries? A Comparative Case Study. *ACS Appl. Mater. Interfaces* **2022**, *14* (33), 38246–38254. DOI: 10.1021/acsami.2c06460.
- 44. Cheng, Z.; Zahiri, B.; Ji, X.; Chen, C.; Chalise, D.; Braun, P. V.; Cahill, D. G. Good Solid-State Electrolytes Have Low, Glass-Like Thermal Conductivity. *Small* **2021**, *17* (28), e2101693. DOI: 10.1002/smll.202101693.
- 45. Takahata, K.; Terasaki, I. Thermal Conductivity of AxBO2-type Layered Oxides Na0.77MnO2 and LiCoO2. *Jpn. J. Appl. Phys.* **2002**, *41* (Part 1, No. 2A), 763–764. DOI: 10.1143/JJAP.41.763.

- 46. Yang, H.; Savory, C. N.; Morgan, B. J.; Scanlon, D. O.; Skelton, J. M.; Walsh, A. Chemical Trends in the Lattice Thermal Conductivity of Li(Ni, Mn, Co)O2 (NMC) Battery Cathodes. *Chem. Mater.* **2020**, *32* (17), 7542–7550. DOI: 10.1021/acs.chemmater.0c02908.
- 47. Rohde, M.; Mohsin, I. U. I.; Ziebert, C.; Seifert, H. J. Ionic and Thermal Transport in Na-Ion-Conducting Ceramic Electrolytes. *Int. J. Thermophys.* **2021,** *42* (10), 136. DOI: 10.1007/s10765-021-02886-x.
- 48. Cho, J.; Losego, M. D.; Zhang, H. G.; Kim, H.; Zuo, J.; Petrov, I.; Cahill, D. G.; Braun, P. V. Electrochemically tunable thermal conductivity of lithium cobalt oxide. *Nat. Commun.* **2014**, *5*, 4035. DOI: 10.1038/ncomms5035.
- 49. Shin, J.; Kim, S.; Park, H.; Won Jang, H.; Cahill, D. G.; Braun, P. V. Thermal conductivity of intercalation, conversion, and alloying lithium-ion battery electrode materials as function of their state of charge. *Curr. Opin. Solid State Mater. Sci.* 2022, 26 (2), 100980. DOI: 10.1016/j.cossms.2021.100980.
- 50. Wu, C.-W.; Ren, X.; Zhou, W.-X.; Xie, G.; Zhang, G. Thermal stability and thermal conductivity of solid electrolytes. *APL Mater.* **2022**, *10* (4), 40902.
- 51. Bates, A. M.; Preger, Y.; Torres-Castro, L.; Harrison, K. L.; Harris, S. J.; Hewson, J. Are solid-state batteries safer than lithium-ion batteries? *Joule* **2022**, *6* (4), 742–755. DOI: 10.1016/j.joule.2022.02.007.
- 52. Tomida, D. Thermal Conductivity of Ionic Liquids. In *Impact of Thermal Conductivity on Energy Technologies*; Shahzad, A., Ed.; InTech, 2018. DOI: 10.5772/intechopen.76559.
- 53. Lin, S.; Li, W.; Li, S.; Zhang, X.; Chen, Z.; Xu, Y.; Chen, Y.; Pei, Y. High Thermoelectric Performance of Ag9GaSe6 Enabled by Low Cutoff Frequency of Acoustic Phonons. *Joule* **2017**, *1* (4), 816–830. DOI: 10.1016/j.joule.2017.09.006.
- 54. Niedziela, J. L.; Bansal, D.; May, A. F.; Ding, J.; Lanigan-Atkins, T.; Ehlers, G.; Abernathy, D. L.; Said, A.; Delaire, O. Selective breakdown of phonon quasiparticles across superionic transition in CuCrSe2. *Nat. Phys.* **2019**, *15* (1), 73–78. DOI: 10.1038/s41567-018-0298-2.

- 55. Brenner, T. M.; Grumet, M.; Till, P.; Asher, M.; Zeier, W. G.; Egger, D. A.; Yaffe, O. Anharmonic Lattice Dynamics in Sodium Ion Conductors. *J. Phys. Chem. Lett.* **2022**, *13* (25), 5938–5945. DOI: 10.1021/acs.jpclett.2c00904.
- 56. Latz, A.; Zausch, J. Multiscale modeling of lithium ion batteries: thermal aspects. *Beilstein J. Nanotechnol.* **2015**, *6*, 987–1007. DOI: 10.3762/bjnano.6.102.
- 57. Gholipour Shahraki, M.; Zeinali, Z. Effects of vacancy defects and axial strain on thermal conductivity of silicon nanowires: A reverse nonequilibrium molecular dynamics simulation. *J. Phys. Chem. Solids* **2015**, *85*, 233–238. DOI: 10.1016/j.jpcs.2015.06.001.
- 58. Vadakkepatt, A.; Trembacki, B.; Mathur, S. R.; Murthy, J. Y. Bruggeman's Exponents for Effective Thermal Conductivity of Lithium-Ion Battery Electrodes. *J. Electrochem. Soc.* **2016**, *163* (2), A119-A130. DOI: 10.1149/2.0151602jes.
- 59. Bernges, T.; Böger, T.; Maus, O.; Till, P. S.; Agne, M. T.; Zeier, W. G. Scaling Relations for Ionic and Thermal Transport in the Na+ Ionic Conductor Na3PS4. *ACS Materials Lett.* **2022**, 2491–2498. DOI: 10.1021/acsmaterialslett.2c00846.
- 60. Borup, K. A.; Boor, J. de; Wang, H.; Drymiotis, F.; Gascoin, F.; Shi, X.; Chen, L.; Fedorov, M. I.; Müller, E.; Iversen, B. B.; Snyder, G. J. Measuring thermoelectric transport properties of materials. *Energy Environ. Sci.* **2015**, *8* (2), 423–435. DOI: 10.1039/C4EE01320D.
- 61. Goodenough, J. B.; Park, K.-S. The Li-ion rechargeable battery: a perspective. *J. Am. Chem. Soc.* **2013**, *135* (4), 1167–1176. DOI: 10.1021/ja3091438.
- 62. Qian, X.; Gu, X.; Dresselhaus, M. S.; Yang, R. Anisotropic Tuning of Graphite Thermal Conductivity by Lithium Intercalation. *J. Phys. Chem. Lett.* **2016**, *7* (22), 4744–4750. DOI: 10.1021/acs.jpclett.6b02295.
- 63. Key, B.; Bhattacharyya, R.; Morcrette, M.; Seznéc, V.; Tarascon, J.-M.; Grey, C. P. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. *J. Am. Chem. Soc.* **2009**, *131* (26), 9239–9249. DOI: 10.1021/ja8086278.
- 64. Yin, W.; Grimaud, A.; Rousse, G.; Abakumov, A. M.; Senyshyn, A.; Zhang, L.; Trabesinger, S.; Iadecola, A.; Foix, D.; Giaume, D.; Tarascon, J.-M. Structural evolution at the oxidative and

- reductive limits in the first electrochemical cycle of Li1.2Ni0.13Mn0.54Co0.13O2. *Nat. Commun.* **2020,** *11* (1), 1252. DOI: 10.1038/s41467-020-14927-4.
- 65. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G. Li-ion battery materials: present and future. *Mater. Today* **2015**, *18* (5), 252–264. DOI: 10.1016/j.mattod.2014.10.040.
- 66. Manthiram, A. A reflection on lithium-ion battery cathode chemistry. *Nat. Commun.* **2020,** *11* (1), 1550. DOI: 10.1038/s41467-020-15355-0.
- 67. Hou, P.; Chu, G.; Gao, J.; Zhang, Y.; Zhang, L. Li-ion batteries: Phase transition. *Chinese Phys. B* **2016**, *25* (1), 16104. DOI: 10.1088/1674-1056/25/1/016104.
- 68. Young, D.; Ransil, A.; Amin, R.; Li, Z.; Chiang, Y.-M. Electronic Conductivity in the Li 4/3 Ti 5/3 O 4 -Li 7/3 Ti 5/3 O 4 System and Variation with State-of-Charge as a Li Battery Anode. *Adv. Energy Mater.* **2013**, *3* (9), 1125–1129. DOI: 10.1002/aenm.201300134.
- Jetybayeva, A.; Schön, N.; Oh, J.; Kim, J.; Kim, H.; Park, G.; Lee, Y.-G.; Eichel, R.-A.; Kleiner, K.; Hausen, F.; Hong, S. Unraveling the State of Charge-Dependent Electronic and Ionic Structure–Property Relationships in NCM622 Cells by Multiscale Characterization. *ACS Appl. Energy Mater.* 2022, 5 (2), 1731–1742. DOI: 10.1021/acsaem.1c03173.
- 70. Chen, Z.; Qin, Y.; Amine, K.; Sun, Y.-K. Role of surface coating on cathode materials for lithium-ion batteries. *J. Mater. Chem.* **2010**, *20* (36), 7606. DOI: 10.1039/C0JM00154F.
- 71. Hanus, R. C.; Agne, M. T.; Rettie, A. J. E.; Chen, Z.; Tan, G.; Chung, D. Y.; Kanatzidis, M. G.; Pei, Y.; Voorhees, P. W.; Snyder, G. J. Lattice Softening Significantly Reduces Thermal Conductivity and Leads to High Thermoelectric Efficiency. *Adv. Mater.* **2019**, *31* (21), e1900108. DOI: 10.1002/adma.201900108.
- 72. Cheng, Z.; Ji, X.; Cahill, D. G. Battery absorbs heat during charging uncovered by ultrasensitive thermometry. *J. Power Sources* **2022**, *518*, 230762. DOI: 10.1016/j.jpowsour.2021.230762.
- 73. Agne, M. T.; Voorhees, P. W.; Snyder, G. J. Phase Transformation Contributions to Heat Capacity and Impact on Thermal Diffusivity, Thermal Conductivity, and Thermoelectric Performance. *Adv. Mater.* **2019**, *31* (35), e1902980. DOI: 10.1002/adma.201902980.

- 74. Bruggeman, D. A. G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. *Ann. Phys.* **1935**, *416* (7), 636–664. DOI: 10.1002/andp.19354160705.
- 75. Gong, L.; Wang, Y.; Cheng, X.; Zhang, R.; Zhang, H. A novel effective medium theory for modelling the thermal conductivity of porous materials. *Int. J. Heat Mass Transfer* **2014**, *68*, 295–298. DOI: 10.1016/j.ijheatmasstransfer.2013.09.043.
- 76. Pietrak, K.; Wiśniewski, T. S. A review of models for effective thermal conductivity of composite materials. *J. Power Technol.* **2015**, *95* (1), 14–24.
- 77. Bernges, T.; Böger, T.; Maus, O.; Zeier, W. G. Tims Na3PS4 paper 2022.
- 78. Zhou, Z.; Agne, M. T.; Zhang, Q.; Wan, S.; Song, Q.; Xu, Q.; Lu, X.; Gu, S.; Fan, Y.; Jiang, W.; Snyder, G. J.; Wang, L. Microstructure and composition engineering Yb single-filled CoSb3 for high thermoelectric and mechanical performances. *J. Materiomics* **2019**, *5* (4), 702–710. DOI: 10.1016/j.jmat.2019.04.008.
- 79. He, J.; Xia, Y.; Lin, W.; Pal, K.; Zhu, Y.; Kanatzidis, M. G.; Wolverton, C. Accelerated Discovery and Design of Ultralow Lattice Thermal Conductivity Materials Using Chemical Bonding Principles. *Adv. Funct. Mater.* **2022,** *32* (14), 2108532. DOI: 10.1002/adfm.202108532.
- 80. Schmidt, A. J.; Collins, K. C.; Minnich, A. J.; Chen, G. Thermal conductance and phonon transmissivity of metal–graphite interfaces. *J. Appl. Phys.* **2010**, *107* (10), 104907. DOI: 10.1063/1.3428464.
- 81. Gurunathan, R.; Hanus, R.; Graham, S.; Garg, A.; Snyder, G. J. Thermal resistance at a twist boundary and a semicoherent heterointerface. *Phys. Rev. B* **2021**, *103* (14). DOI: 10.1103/PhysRevB.103.144302.
- 82. Hopkins, P. E. Thermal Transport across Solid Interfaces with Nanoscale Imperfections: Effects of Roughness, Disorder, Dislocations, and Bonding on Thermal Boundary Conductance. *ISRN Mech. Eng.* **2013**, *2013*, 1–19. DOI: 10.1155/2013/682586.

- 83. Nan, C.-W.; Birringer, R.; Clarke, D. R.; Gleiter, H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. *J. Appl. Phys.* **1997**, *81* (10), 6692–6699.
- 84. Wu, X.; Luo, T. The importance of anharmonicity in thermal transport across solid-solid interfaces. *J. Appl. Phys.* **2014**, *115* (1), 14901. DOI: 10.1063/1.4859555.
- 85. Eckhardt, J. K.; Klar, P. J.; Janek, J.; Heiliger, C. Interplay of Dynamic Constriction and Interface Morphology between Reversible Metal Anode and Solid Electrolyte in Solid State Batteries. *ACS Appl. Mater. Interfaces* **2022**, *14* (31), 35545–35554. DOI: 10.1021/acsami.2c07077.
- Bielefeld, A.; Weber, D. A.; Janek, J. Modeling Effective Ionic Conductivity and Binder Influence in Composite Cathodes for All-Solid-State Batteries. ACS Appl. Mater. Interfaces
 2020, 12 (11), 12821–12833. DOI: 10.1021/acsami.9b22788.
- 87. Tjaden, B.; Cooper, S. J.; Brett, D. J. L.; Kramer, D.; Shearing, P. R. On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems. *Curr. Opin. Chem. Eng.* **2016**, *12*, 44–51. DOI: 10.1016/j.coche.2016.02.006.
- 88. Nguyen, T.-T.; Demortière, A.; Fleutot, B.; Delobel, B.; Delacourt, C.; Cooper, S. J. The electrode tortuosity factor: why the conventional tortuosity factor is not well suited for quantifying transport in porous Li-ion battery electrodes and what to use instead. *npj Comput Mater* **2020**, *6* (1). DOI: 10.1038/s41524-020-00386-4.
- 89. Zhang, Z.; Roy, P.-N.; Li, H.; Avdeev, M.; Nazar, L. F. Coupled Cation-Anion Dynamics Enhances Cation Mobility in Room-Temperature Superionic Solid-State Electrolytes. *J. Am. Chem. Soc.* **2019**, *141* (49), 19360–19372. DOI: 10.1021/jacs.9b09343.
- 90. Muy, S.; Bachman, J. C.; Giordano, L.; Chang, H.-H.; Abernathy, D. L.; Bansal, D.; Delaire, O.; Hori, S.; Kanno, R.; Maglia, F.; Lupart, S.; Lamp, P.; Shao-Horn, Y. Tuning mobility and stability of lithium ion conductors based on lattice dynamics. *Energy Environ. Sci.* **2018**, *11* (4), 850–859. DOI: 10.1039/C7EE03364H.

- 91. Krauskopf, T.; Muy, S.; Culver, S. P.; Ohno, S.; Delaire, O.; Shao-Horn, Y.; Zeier, W. G. Comparing the Descriptors for Investigating the Influence of Lattice Dynamics on Ionic Transport Using the Superionic Conductor Na3PS4- xSe x. *J. Am. Chem. Soc.* **2018**, *140* (43), 14464–14473. DOI: 10.1021/jacs.8b09340.
- 92. Zhang, Z.; Nazar, L. F. Exploiting the paddle-wheel mechanism for the design of fast ion conductors. *Nat. Rev. Mater.* **2022**, *7* (5), 389–405. DOI: 10.1038/s41578-021-00401-0.
- 93. Muy, S.; Schlem, R.; Shao-Horn, Y.; Zeier, W. G. Phonon–Ion Interactions: Designing Ion Mobility Based on Lattice Dynamics. *Advanced Energy Materials* **2021**, *11* (15), 2002787. DOI: 10.1002/aenm.202002787.
- 94. Yelon, A.; Movaghar, B.; Crandall, R. S. Multi-excitation entropy: its role in thermodynamics and kinetics. *Rep. Prog. Phys.* **2006**, *69* (4), 1145–1194. DOI: 10.1088/0034-4885/69/4/R04.
- 95. Gordiz, K.; Muy, S.; Zeier, W. G.; Shao-Horn, Y.; Henry, A. Enhancement of ion diffusion by targeted phonon excitation. *Cell Rep. Phys. Sci.* **2021**, *2* (5), 100431. DOI: 10.1016/j.xcrp.2021.100431.
- Gupta, M. K.; Ding, J.; Osti, N. C.; Abernathy, D. L.; Arnold, W.; Wang, H.; Hood, Z.; Delaire,
 O. Fast Na diffusion and anharmonic phonon dynamics in superionic Na3PS4. *Energy Environ. Sci.* 2021, 14 (12), 6554–6563. DOI: 10.1039/D1EE01509E.
- 97. Randau, S.; Walther, F.; Neumann, A.; Schneider, Y.; Negi, R. S.; Mogwitz, B.; Sann, J.; Becker-Steinberger, K.; Danner, T.; Hein, S.; Latz, A.; Richter, F. H.; Janek, J. On the Additive Microstructure in Composite Cathodes and Alumina-Coated Carbon Microwires for Improved All-Solid-State Batteries. *Chem. Mater.* 2021, 33 (4), 1380–1393. DOI: 10.1021/acs.chemmater.0c04454.
- 98. Alabdali, M.; Zanotto, F. M.; Viallet, V.; Seznec, V.; Franco, A. A. Microstructurally resolved modeling of all solid-state batteries: Latest progresses, opportunities, and challenges. *Curr. Opin. Electrochem.* **2022**, *36*, 101127. DOI: 10.1016/j.coelec.2022.101127.
- 99. Möhrle, D. O.; Becker-Steinberger, K.; Horstmann, B.; Latz, A. *Modeling and Simulation of All-Solid-State Batteries with Block Copolymers*. https://elib.dlr.de/139572.

100. Neumann, A.; Randau, S.; Becker-Steinberger, K.; Danner, T.; Hein, S.; Ning, Z.; Marrow, J.; Richter, F. H.; Janek, J.; Latz, A. Analysis of Interfacial Effects in All-Solid-State Batteries with Thiophosphate Solid Electrolytes. ACS Appl. Mater. Interfaces 2020, 12 (8), 9277–9291. DOI: 10.1021/acsami.9b21404.