000943469 001__ 943469
000943469 005__ 20230228121559.0
000943469 0247_ $$2doi$$a10.48550/ARXIV.2212.05519
000943469 0247_ $$2Handle$$a2128/33801
000943469 037__ $$aFZJ-2023-01038
000943469 1001_ $$0P:(DE-Juel1)176178$$aXu, Xuexin$$b0$$ufzj
000943469 245__ $$aAn error-protected cross-resonance switch in weakly-tuneable architectures
000943469 260__ $$barXiv$$c2022
000943469 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1675057203_19837
000943469 3367_ $$2ORCID$$aWORKING_PAPER
000943469 3367_ $$028$$2EndNote$$aElectronic Article
000943469 3367_ $$2DRIVER$$apreprint
000943469 3367_ $$2BibTeX$$aARTICLE
000943469 3367_ $$2DataCite$$aOutput Types/Working Paper
000943469 520__ $$aIn two-qubit gates activated by microwave pulses, by turning pulse on or off, the state of qubits are swapped between entangled or idle modes. In either mode, the presence of stray couplings makes qubits accumulate coherent phase error. However, the error rates in the two modes differ because qubits carry different stray coupling strengths in each mode; therefore, eliminating stray coupling from one mode does not remove it from the other. We propose to combine such a gate with a tunable coupler and show that both idle and entangled qubits can become free from stray couplings. This significantly increases the operational switch fidelity in quantum algorithms. We further propose a weakly-tunable qubit as an optimum coupler to bring the two modes parametrically near each other. This remarkably enhances the tuning process by reducing its leakage.
000943469 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000943469 588__ $$aDataset connected to DataCite
000943469 650_7 $$2Other$$aQuantum Physics (quant-ph)
000943469 650_7 $$2Other$$aFOS: Physical sciences
000943469 7001_ $$0P:(DE-Juel1)171686$$aAnsari, M.$$b1$$ufzj
000943469 773__ $$a10.48550/ARXIV.2212.05519
000943469 8564_ $$uhttps://juser.fz-juelich.de/record/943469/files/2212.05519-1.pdf$$yOpenAccess
000943469 909CO $$ooai:juser.fz-juelich.de:943469$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000943469 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176178$$aForschungszentrum Jülich$$b0$$kFZJ
000943469 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171686$$aForschungszentrum Jülich$$b1$$kFZJ
000943469 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000943469 9141_ $$y2022
000943469 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000943469 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000943469 9801_ $$aFullTexts
000943469 980__ $$apreprint
000943469 980__ $$aVDB
000943469 980__ $$aUNRESTRICTED
000943469 980__ $$aI:(DE-Juel1)PGI-2-20110106