001     943469
005     20230228121559.0
024 7 _ |a 10.48550/ARXIV.2212.05519
|2 doi
024 7 _ |a 2128/33801
|2 Handle
037 _ _ |a FZJ-2023-01038
100 1 _ |a Xu, Xuexin
|0 P:(DE-Juel1)176178
|b 0
|u fzj
245 _ _ |a An error-protected cross-resonance switch in weakly-tuneable architectures
260 _ _ |c 2022
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1675057203_19837
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a In two-qubit gates activated by microwave pulses, by turning pulse on or off, the state of qubits are swapped between entangled or idle modes. In either mode, the presence of stray couplings makes qubits accumulate coherent phase error. However, the error rates in the two modes differ because qubits carry different stray coupling strengths in each mode; therefore, eliminating stray coupling from one mode does not remove it from the other. We propose to combine such a gate with a tunable coupler and show that both idle and entangled qubits can become free from stray couplings. This significantly increases the operational switch fidelity in quantum algorithms. We further propose a weakly-tunable qubit as an optimum coupler to bring the two modes parametrically near each other. This remarkably enhances the tuning process by reducing its leakage.
536 _ _ |a 5224 - Quantum Networking (POF4-522)
|0 G:(DE-HGF)POF4-5224
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Quantum Physics (quant-ph)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
700 1 _ |a Ansari, M.
|0 P:(DE-Juel1)171686
|b 1
|u fzj
773 _ _ |a 10.48550/ARXIV.2212.05519
856 4 _ |u https://juser.fz-juelich.de/record/943469/files/2212.05519-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:943469
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176178
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171686
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5224
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21