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In two-qubit gates activated by microwave pulses, by turning pulse on or off, the state of qubits
are swapped between entangled or idle modes. In either mode, the presence of stray couplings makes
qubits accumulate coherent phase error. However, the error rates in the two modes differ because
qubits carry different stray coupling strengths in each mode; therefore, eliminating stray coupling
from one mode does not remove it from the other. We propose to combine such a gate with a tunable
coupler and show that both idle and entangled qubits can become free from stray couplings. This
significantly increases the operational switch fidelity in quantum algorithms. We further propose
a weakly-tunable qubit as an optimum coupler to bring the two modes parametrically near each
other. This remarkably enhances the tuning process by reducing its leakage.

I. INTRODUCTION

Over a few decades, quantum computing has evolved
from a concept [1] to experiments on noisy intermediate-
scale quantum processors [2–4]. In the processors, en-
tangled qubits together search for the answer state to
a computational problem and this outperforms classical
computational time [5–7]. In gate-based quantum pro-
cessors, quantum maps are decomposed into a sequence
of one and two-qubit gates. Engineering these gates has
targeted fast and less erroneous quantum state change.

Scaling of current superconducting processors towards
thousands of qubits is in principle possible; however, the
key obstacle for current state-of-the-art technology is the
large gate error rates [8–10]. The two-qubit gate error
rate has been significantly reduced over the past few years
and is currently about 0.4 percent, one error per 250 op-
erations [11–13]. However, such error rates are far from
useful quantum advantage and error correction. There is
a clear knowledge gap in the literature on enabling lower
qubit error rates. While careful control of material noise
sources, such as trap states [14, 15] and nonequilibrium
quasiparticle tunnelling [16–18], improves qubit coher-
ence time and leads to a lower gate error rate, however,
gates should be protected against non-material sources
of errors, such as leakage to or from non-computational
levels, and crosstalk due to stray couplings between in-
teracting qubits.

There is still a significant unwanted stray coupling
between two idle qubits, which leads to an always-on
and accumulating correlated coherent error for non-gated
qubits when running quantum algorithms [19]. A com-
mon solution to eliminate stray crosstalk is introducing
a tunable coupling element, investigated by numerous
groups [20–22]. The same tunable coupler between two
qubits may also be used to find an operating point for in-
troducing strong two qubits interaction in a controllable
way, which relates the tunable coupler to the concept of
ON/OFF switch in CZ gates [11].

Next to the concept of gates that require a tunable cou-
pler between two qubits, there is a second class of gates
more suitable for circuits with fixed-frequency qubits and
couplers. In the latter class, a commonly used gate is the

so-called cross-resonance (CR) gate, which is realized by
applying a microwave pulse on a qubit and driving it
with the frequency of another qubit. The CR gate sup-
plies weak yet fully controllable ZX interaction between
the two qubits for as long as the pulse is applied. Single
qubit gates can follow it to introduce a CNOT operation
on the initial two-qubit state. In state-of-the-art circuits,
the qubit-qubit stray ZZ coupling is 50-100 times weaker
than the qubit-qubit engineered coupling strength; how-
ever, this reduces CR gate fidelity by 1% [23–25]. Re-
cently remarkable advances for better CR gates have been
proposed by zeroing stray coupling in a hybrid circuit
[26–28], and between two transmons [11, 29, 30].

A problem with the state-of-the-art CR gate is that
switching between idle and entanglement is achieved by
turning on and off the microwave pulse. This is a problem
because the stray coupling strength changes in the pres-
ence or absence of a microwave pulse. For example, one
can use the protocol called ‘dynamic ZZ-freedom’ — see
section V of Ref. [31, 32] — to eliminate total stray cou-
pling in the presence of CR pulse; however, once the pulse
is switched off, the idle qubits start to feel some residual
stray coupling, making them accumulate coherent phase
error. Similar is the other way around: once stray cou-
plings are eliminated in the absence of microwave pulse
using ‘static ZZ-freedom’ protocol — in section III of
Ref. [31, 33] — idle qubits perform better, however acti-
vating CR gate introduces some risidual ZZ coupling to
lower CR gate fidelity.

Here we introduce a parasitic-free cross-resonance
on/off switch, namely parasitic-free (PF) gate, which
eliminates ZZ stray coupling from both idle and entan-
gled operating modes. We study the characteristics of
this gate by deep modelling it. We show that the required
parasitic-freedom feature occurs by tuning the coupling
strength in the presence or absence of a microwave pulse.
We show several operating points for switching the CR
gate on and off without leaving any parasitic ZZ error
on the states. Among all operating points, we narrow
our search for the most optimum on/off points to be the
closest to one another, and for such points, we work out
the most optimum tuning pulse for minimal leakage.

Figure 1 shows the summary of our proposal. Differ-
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FIG. 1. Schematic PF gate. At goff (gon) points, the qubits
are at idle (entangled) mode with net zero parasitic ZZ(Ω)
interaction. The static ZZ interaction, shown as ZZ(Ω = 0),
has zeros at genuine and affine points.

ent from the recently implemented CR gate [34], our PF
gate can switch between idle (I) and entangled (E) modes
without collecting any residual ZZ in the modes. Resid-
ual interaction in the presence of CR drive is denoted
by ZZ(Ω) with Ω being the microwave pulse amplitude
and ZZ(0) indicating static stray coupling in the absence
of microwave. Switching mainly occurs by enabling tun-
ability in coupling strength g between qubits. At idle
mode, as long as the coupler is parked at goff , the qubits
do not pick up the erroneous phase. Approaching such a
parasitic-free switch is an essential step toward error-free
quantum computation.

II. PRINCIPLES

The parasitic-free (PF) gate is a variant of CR gate
with zero ZZ interaction between qubits at idle mode,
shown here with PF/I, and entangled mode, shown as
PF/E. Switching between I and E modes is reversible
operation that requires modulating a circuit parameter
to switch. Qubits are undriven at PF/I mode and carry
zero residual ZZ interaction. At PF/E mode, the cou-
pler strength between qubits is changed, and a CR pulse
is applied to provide ZX-type coupling strength. This
gate combines two essential features: 1) by filtering out
parasitic interactions in the presence or absence of exter-
nal driving, high state fidelity can be achieved on both
modes, and 2) it safely provides a faster as well as higher
fidelity 2-qubit gate by combining circuit tunability with
external driving.

Figure 2(a) shows the schematic of the PF gate that
switches qubits Q1 and Q2. The gate principles are uni-
versal for all types of qubits and both harmonic and an-
harmonic couplers. However, there is a practical prefer-
ence to use a tunable coupler rather than tunable qubits,
since the latter is proven to suffer slightly from rela-
tively lower coherence times that may degrade gate per-
formance [35].

Let us consider a circuit with qubits Q1 and Q2 cou-
pled via the coupler C and denote their quantum states as
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FIG. 2. (a) The PF gate at idle mode is active during PF/I
operation box (green) and at the entangled mode during the
PF/E operation box (pink). (b) Left: PF gate circuit; Right:
PF gate timing and components. tg is the duration of the
entangled mode with τ0 being the rise/fall time from idle to
entangled modes; (c) The energy diagrams at idle and entan-
gled modes – vertical arrows show level repulsions.

|Q1, C,Q2〉. Schematic circuits can be seen in Fig. 2(b),
where Q1 and Q2 interact directly by g12 and indirectly
by individual couplings to C with coupling strengths g1c

and g2c. In principle, qubit and coupler Hamiltonians are
similar since coupler can be considered as a third qubit,
i.e. Hi = ωi(ni)â

†
i âi + δiâ

†
i â
†
i âiâi/2, with âi (â†i ) being

annihilation (creation) operator, ωi frequency, δi anhar-
monicity, and i = 1, 2, c. We can write circuit Hamil-
tonian as H =

∑
i=1,2,cHi +

∑
i6=j gij(â

†
i + âi)(â

†
j + âj)

with gij being coupling strengths. In the situation where
qubits are far detuned from the coupler, |ω1/2 − ωc| �
|g|, namely the dispersive regime, the total Hamiltonian
can be perturbatively diagonalized in a higher order of
g/|ω1/2−ωc|. However, it is important to emphasize that
quantum processors can operate beyond the dispersive
regime, see Ref. [36].

By summing over coupler states and transforming the
Hamiltonian into a block diagonal frame [37], one can
simplify it as an effective Hamiltonian in the computa-
tional Hilbert space of two qubits [38]. This simplification
reveals that the two qubits interact only by a ZZ interac-
tion, usually considered unwanted and always on as long
as energy levels are not shifted. The computational part
of effective Hamiltonian in its eigenbasis, namely ‘dressed
basis’, is

Heff = −ω̃1ẐÎ/2− ω̃2ÎẐ/2 + ζsẐẐ/4 (1)
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with ω̃i being qubit frequency in tilde dressed basis and
ζs = Ẽ11−Ẽ01−Ẽ10+Ẽ00 being the static level repulsion
coefficient in the absence of external driving. As long as
qubits are not externally driven Eq. (1) describes the
circuit quantum electronics to acceptable accuracy.

Microwave-driving Q1, namely the ‘control’ qubit, at
the frequency of Q2, namely the ‘target’ qubit, intro-
duces wanted and unwanted transitions between low-
lying energy levels. In the bare basis of noninteract-
ing qubits the driving Hamiltonian can be written as
Hd = Ω cos(ω̃2t)(â

†
1 + â1). In the interacting qubit ref-

erence frame co-rotating with a driving pulse, the tran-
sitions in the leading Ω order can be divided into two
parts:

Hd = H
(c)
d +H

(nc)
d (2)

in which H
(c)
d (H(nc)

d ) denotes the following computa-
tional (non-computational) transitions:

H
(c)
d /Ω= λ1 (|000〉〈001| − |100〉〈101|)

+λ2 (|000〉〈010| − |100〉〈110|) +H.c. (3)

and beyond the computational subspace:

H
(nc)
d /Ω =λ3 (|001〉〈002| − |101〉〈102|)

+|001〉 (〈011|λ4 + 〈200|λ5)

+|010〉 (〈200|λ6 + 〈011|λ7 + 〈020|λ8)

+ (λ9|011〉+ λ10Ω|200〉+ λ11|002〉) 〈201|
+H.c. (4)

In the Hamiltonian (3) the single-qubit rotations
have been dropped out, such as |000〉〈001|, |100〉〈101|,
|001〉〈002|, and |101〉〈102|. It is important to mention
that applying the cross-resonance pulse produces para-
sitic classical crosstalk between the two qubits, which
adds other stray couplings. Some of these terms are
eliminated by applying a secondary and simultaneous mi-
crowave pulse on the target qubit to drive it at particular
amplitude and phase. Additionally, echoing all pulses, or
applying a virtual Z gate on target, helps eliminate the
ZI component.

Figure 3 shows the computational (non-
computational) transitions by solid (dashed) arrows.
Appendix B we briefly explain how one can derive this
Hamiltonian (3) and evaluate all λ’s in the leading g2

order.
Evidently, in the dispersive regime by mapping the

Hamiltonian (3) on computational subspace, one can ob-
tain a microwave-assisted part for ZZ interaction be-
tween qubits [38, 39], denoted here by ζd. This indicates
that the total ZZ interaction in the presence of a driving
pulse is ζ = ζs + ζd.

Let us now supply further details about the static part.
The coupler between two qubits can be a harmonic os-
cillator, such as a resonator, or another qubit with finite
anharmonicity. The perturbative analysis of a harmonic
coupler shows that it supplies the effective ZZ coupling
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FIG. 3. Energy levels Eq1,c,q2 and microwave-driven transi-
tions in a frame co-rotating with the microwave pulse. Double
arrowed solid (dashed) lines show computational (noncompu-
tational) transitions. The shaded area shows near E101 zone.

ζs1 between two qubits, which depends on circuit param-
eters as shown in Eq. (5). A finite anharmonicity δc for
the coupler will add the correction ζs2. In Eq. (5) we
shows both parts in O(g4):

ζ = ζs1 + ζs2 + ζd,

ζs1 =
2g2

eff (δ1 + δ2)

(∆12 − δ2)(∆12 + δ1)
,

ζs2 =
8(geff − χg12)(geff − g12)

∆1 + ∆2 − δc
, (5)

with ∆12 = ω1 − ω2, ∆q = ωq − ωc, χ = δc/(∆1 + ∆2),
and the effective coupling between two qubits is

geff = g12 +
g1cg2c

2

∑
q=1,2

(
1

∆q
− 1

Σq

)
, (6)

with Σq = ωq + ωc.
At the entangled mode of the PF gate, firstly qubits are

coupled by changing circuit parameters; therefore, a non-
zero static ZZ interaction is expected to show up between
qubits. A cross-resonance pulse is then assisted so that
ZX interaction is supplied between qubits. Let us denote
the strength of this coupling with αZX . From Eq. (3) one
can determine it in the leading perturbative order αZX ∼
λ1Ω which is in agreement with experiment in weak Ω
regime [40]. Any further nonlinearity can be studied in
higher orders. The ZX interaction transforms quantum
states by the operator Û = exp(2πiαZXτẐX̂/2) during
the time τ that external driving is active. In order to
perform a typical π/2 conditional-rotation on the second
qubit, i.e. ZX90, the two-qubit state must transform by
exp(i(π/2)ẐX̂/2). This indicates that external driving
should be switched on for τ = 1/4αZX . Therefore the
stronger αZX is the shorter time performing the gate
takes. Needless to say, during the whole time the driving
is active, this interaction is accompanied by the driving-
assisted parasitic interaction ζd. However, there is a good
chance that one can find a large class of parameters at
which the total ZZ interaction vanishes. We show in the
next section that strengthening αZX can be found by
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modulating both coupling strength between qubits and
the external driving amplitude. This improves the gate
performance by zeroing parasitic interactions and making
the gate much faster.

In the following sections, we will discuss a detailed
analysis of several circuit examples and show the per-
formance of the PF gate on them.

III. EXAMPLES OF THE PF GATE

Switching between I and E modes requires a change in
circuit parameters before external driving is activated. In
a circuit with two qubits and a coupler there are differ-
ent possibilities for selecting which is tuned by circuit pa-
rameter modulation and which is driven externally. Fig-
ure 4 shows three possible examples based on supercon-
ducting qubits. In circuit (a) two fixed frequency qubits
Q1 and Q2 are coupled by a tunable coupler, which can
be another qubit with flux-tunable frequency, so that as
one can see in Eq. (6) changing the flux modulates effec-
tive coupling strength between qubits. In circuit (b) two
qubits are coupled to a weakly tunable qubit (WTQ),
which enables its frequency to be tuned in a small range
by manipulating inductive coupling [41]. Circuit (c) is
different as it consists of a flux-tunable Q1 coupled to
fixed-frequency Q2 via a fixed-frequency coupler, but it
suffers from a relatively limited qubit coherence time.
For all three circuits, the E mode can be assisted by ex-
ternally driving Q1. It is worth mentioning that there
are other microwave-activated approaches to implement
quantum gates; for instance, imposing additional pulses
in the circuit (a) has recently proved useful to execute
multiqubit gate experiment [42, 43].

PF/I

PF/E

𝚽

Q1 Q2

C2cC1c

C12

C1 Cc C2

C2cC1c

C12

C1 Cc C2

𝚽+𝞓𝚽

Q1 Q2

C2cC1c

C12

C1 Cc C2

Q2Q1

𝚽+𝞓𝚽

𝚽

(a) (b) (c)

WTQ
CouplerCoupler

IB

IB+𝞓IB

FIG. 4. Three schematic PF-gate circuits, (a) wide frequency-
tunable coupler, (b) weakly-tunable coupler, and (c) a tunable
frequency qubit. Lower panels show how the PF gate switches
between I and E modes.

Here we study circuit (a) with tunability in the coupler,
but it does not mean the coupler must be an asymmetric
transmon. In this circuit idle mode is obtained by tuning
the coupler to the frequency ωI

c, and in entangled mode
it is tuned at ωE

c accompanied by a CR drive, as shown
in Fig. 2(b).

To test the performance of the PF gate we numerically
study seven sample devices parametrized on the circuit
of Fig. 4(a). These devices are listed in Table I. The
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FIG. 5. Numeric static ZZ strength in the seven devices listed
in Table I versus coupler frequencies.

direct capacitive coupling g12 are grouped in 3 values,
the weakest for device 1, intermediate for devices 2, 3,
4, 7, and the strongest for devices 5 and 6. Among de-
vices in the intermediate g12 group device 3 has stronger
coupler anharmonicity, while devices 2 and 4 have sim-
ilar coupler anharmonicity, yet in device 4 qubit anhar-
monicity is stronger. Specifically, device 7 stays out of
straddling regime where |∆| > |δ| and the tunable cou-
pler has positive anharmonicity. In the group of devices
5 and 6 with the strongest g12, the qubit-qubit detun-
ing frequency is stronger compared to all other devices
with the difference that device 5 is on a hybrid circuit
by combining a transmon and a Capacitively Shunted
Flux Qubit (CSFQ) while device 6 is on a transmon-
transmon circuit. We consider universal qubit-coupler
coupling strength g1c/2π = g2c/2π = 95 MHz parked at
ωc/2π = 4.8 GHz for all devices.

TABLE I: Device parameters.

ω1/2π ω2/2π g12/2π δc/2π δ1/2π δ2/2π
(GHz) (GHz) (MHz) (MHz) (MHz) (MHz)

1 4.25 4.20 3.76 −100 −250 −250
2 4.25 4.20 6.48 −100 −250 −250
3 4.25 4.20 6.48 −200 −250 −250
4 4.25 4.20 6.48 −100 −320 −320
5 4.00 4.20 9.48 −100 500 −250
6 4.40 4.20 9.48 −100 −320 −320
7 4.50 4.20 6.48 +200 −250 −250

We evaluate the static ZZ interaction using the pa-
rameters listed in Table I. We take three different ap-
proaches for our evaluations. In one approach, we nu-
merically diagonalize the Hamiltonian (A1) in a large
Hilbert space. We tested these results with yet an-
other numerical formalism proposed recently in Ref. [44],
namely the Non-Perturbative Analytical Diagonalization
(NPAD) method. These two methods give rise to the
same result as plotted in Fig. 11 in Appendix A. In the
same plot we also present the second-order Schrieffer-
Wolff perturbative results as SWT, which is consistent
with the numerical results only when the coupler fre-
quency is tuned far away from qubits.
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Figure 5 shows numerical values for the static ZZ in-
teraction at different coupler frequency ωc for the seven
devices listed in Table I. One can see that all devices
possess at least one zero-ZZ point. This will be further
discussed below.

A. The idle mode

In the circuit of Fig. 4(a), if the coupler frequency is
far detuned from qubits, there may exist a particular cou-
pler frequency at which the effective interaction between
qubits vanishes, i.e. geff = 0. One can easily find the
answer using Eq. (6). However, suppose the coupler fre-
quency is closer to qubits, in that case ζs2 induced by the
anharmonic coupler becomes comparable with ζs1, mak-
ing it possible to achieve static ZZ freedom as shown
on the far left of Fig. 5. These two static ZZ freedoms
correspond to two types of idle modes; here, we call the
far-right point with geff = 0 in Fig. 5 as a genuine ZZ-
free point, and the far left point in Fig. 5 as an affine
ZZ-free point. There is also a third type of ZZ zeroness
which stays between genuine and affine points. However,
it always shows up accompanied by at least one of the
genuine/affine ZZ-free points; we treat it as a trivial so-
lution and will not further discuss it.
Genuine idle (GI) mode: Let us first study the gen-

uine ZZ-free point with effective coupling geff = 0. As
discussed in Ref. [45] in a circuit couplings between in-
teracting elements are frequency dependent. The qubit-
coupler interaction strengths g1c and g2c, denoted in
Fig. 2(b), can be rewritten in terms of capacitances
shown in the analogue circuit of Fig. 4(a). The rela-
tion between two sets of parameters can be approxi-
mated as follows: gic ≈ αi

√
ωiωc and g12 ≈ α12

√
ω1ω2

for the qubit label i = 1, 2, with αi = Cic/2
√
CiCc and

α12 = (C12+C1cC2c/Cc)/2
√
C1C2, more accurate deriva-

tion can be found in Refs. [26, 46]. By substituting these
relations into Eq. (6) one can find the so-called genuine
idle coupler frequency ωGI

c at which qubits are effectively
decoupled:

ωGI
c =

ω1 + ω2

2
√

1− 2α1α2/α12

. (7)

TABLE II: Numeric and perturbative coupler frequency ωGI
c .

ωGI
c /2π (GHz) 1 2 3 4 5 6 7

Numeric NA 6.577 6.643 6.577 5.261 5.532 6.674
Eq. (7) NA 6.522 6.522 6.522 5.278 5.536 6.715

By substituting ωGI
c in Eq. (5) the static ZZ interac-

tion turns out to have a small offset 8g2
12δc/(ω1 + ω2 −

2ωGI
c )2. Usually, this offset in the dispersive regime is

only a few kilohertz due to the inaccuracy of the second-
order perturbation theory used to derive Eq. (5). For
example, in the circuit used in Ref. [11] α1/2 ∼ 10α12 ∼
0.02 and ω1/2/2π ∼ 4 GHz, the offset is found approxi-
mately −2 kHz. This is why we do not limit our analysis

in the rest of the paper to perturbation theory. Instead,
we take a more accurate approach to numerical Hamilto-
nian diagonalization. Further comparison can be found
in Appendix A. The numerical result shows that ωGI

c is
slightly shifted from Eq. (7) by a few MHz. This differ-
ence for the seven circuits is given in Table II.
Affine idle (AI) mode: When the coupler frequency

is closer to qubits, effective coupling geff is strengthened
such that geff � g12. In this case by solving ζs = 0 we
have the following perturbative idle coupler frequency:

ωAI
c ≈

ω1 + ω2 − δc
2

− 2(∆12 − δ2)(∆12 + δ1)

δ1 + δ2
(8)

Table III compares the numeric simulation of ωAI
c with

the perturbative results; note that the perturbative solu-
tion beyond the dispersive regime has been ignored.

TABLE III: Numeric and perturbative coupler frequency ωAI
c .

ωAI
c /2π (GHz) 1 2 3 4 5 6 7

Numeric 4.451 4.509 4.610 4.683 NA NA NA
Eq. (8) 4.515 4.515 4.565 4.587 NA NA NA

B. The entangled mode

The PF gate is switched on the entangled mode in two
steps: in the first step, coupler frequency is brought out of
the ωI

c value so that static ZZ becomes nonzero. In the
second step, qubits are driven externally by microwave
pulse with amplitude Ω.

One two-qubit circuit example is to consider that we
use a microwave pulse to drive the ‘control’ qubit, i.e.
the qubit whose second excited level is higher, with the
frequency of the other qubit, namely the ‘target’ qubit.
As discussed above, this driving is called cross resonance
drive and is supposed to supply only the conditional ZX-
type interaction between qubits. However, the desired
external force is accompanied by 3 types of unwanted
operators listed below:

1. Classical crosstalk: supposedly triggered by the
classical translation of driving electromagnetic
waves to the position of target qubit,

2. Control Z rotation: due to driving control qubit
with qubits detuning frequency,

3. Microwave-assisted ZZ interaction: triggered by Ω-
transition between computational and noncompu-
tational levels —listed in Eq. (3) and shown in
Fig. 3 — that changes ζ level repulsion.

The first two can be eliminated as described in Ref.
[47]: driving target qubit with a second pulse to elimi-
nate classical crosstalk and either echoing the pulses or
software-counterrotating control qubit to eliminate its
detuning Z rotation. However, these methods do not
eliminate the third one. To eliminate it, we proposed a
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method called ‘dynamic freedom’, which sets total ZZ to
zero by fine-tuning microwave parameters to cancel out
the static parasitic interaction [31]. The PF gate takes
advantage of the dynamic freedom in the entangled mode
by combining microwave driving with a tunable coupler.

Let us recall that after eliminating the classical
crosstalk and control Z rotation, external driving acti-
vates the Hamiltonian (3) with transitions within and
outside of computational levels shown in Fig. 3. By
block-diagonalizing the Hamiltonian to the computa-
tional subspace one can find the following simplified ver-
sion:

Hd(Ω) = αZX(Ω)ẐX̂/2 + ζd(Ω)ẐẐ/4 (9)

Perturbation theory helps determine ζd and αZX in
terms of driving amplitude Ω. Results show that αZX(Ω)
depends linearly on Ω in the leading order and ζd(Ω) de-
pends on Ω2 (For details see Eq. (15) and Fig. 5,6 in
[31]). One may expect that higher order corrections can
be worked out by adding terms with larger natural num-
ber exponent; however, comparing results with experi-
ments has shown in the past that perturbation theory
is not accurate beyond leading order [38]. Alternatively
we use a nonperturbative approach, the so-called Least
Action (LA) [38, 48].

Our numerical analysis evaluates total parasitic inter-
action ζ by adding the driving part to the static part. We
plot the total ZZ interaction in Fig. 6 in a large range of
qubits frequency detuning ∆12 and coupler frequency ωc

for two sets of circuit parameters. Left (Right) column
plots show simulations for a set of parameters similar to
device 2 (6) except that here we keep ∆12 variable. On
the dashed lines labelled by 2 and 6 the detuning frequen-
cies are fixed to values given in Table I. We plotted three
sets of driving amplitudes in each row: Fig. 6(a,b) show
no driving Ω = 0 to study static level repulsions, Fig.
6(c,d) shows total ZZ interaction after we apply driving
with amplitude Ω = 20 MHz, and Fig. 6(e,f) doubles the
amplitude to Ω = 40 MHz.

In these plots, we show the total parasitic interactions
can be either positive (in red), or negative (in blue). The
zero ZZ devices are shown in black boundaries between
the two regions. In Fig. (6) by closely examining ζ vari-
ation with ωc one or more than one zero points can be
found for a device with fixed ∆12. More details with
stronger driving amplitude can be found in Appendix C.

In general, there are two types of ZZ-free boundaries:
Type I can be found in regions where ζ values become
shallow by gradually being suppressed, and they change
the sign smoothly in white areas. Examples are zeros on
the closed loop in (a,c,e) and the boundary in the middle
of (b,d,f). In type II the ζ values abruptly change the sign
between dark blue and red areas in a narrow domain of
parameters. Examples are the far left side boundaries
in (a,c,e). These correspond to two types of PF gate:
genuine PF gate starting from genuine idle mode to E
mode with type I freedom and affine PF gate starting
from affine idle mode to E mode with type II freedom.

External driving in Fig. 6(c-f) leaves a large class of
devices with zero total ZZ interaction; however, it is no-
ticed by comparing total ZZ with the static one that ex-
ternal driving distorts the freedom boundaries. In (a,c,e)
subplots, which describe the same devices, by increas-
ing Ω the closed-loop surrounding a blue island on the
right is shrunk, while a new closed-loop appears in the
middle surrounding a red island. These boundaries are
additionally distorted for devices with resonant frequency
qubits ∆12 = 0 and devices at the symmetric point with
∆12 = −δ1/2. Perturbation theory shows that ζ diverges
at these two points. We show these points in darker
green dashed lines. Our nonperturbative numerical re-
sults based on the LA method show ζ stays finite, how-
ever by increasing driving power, near these detuning val-
ues microwave-assisted component ζd is largely magnified
and heavily dominates total ZZ therefore zero bound-
aries are largely distorted. Further discussion about the
derivation of microwave-assisted components ζd can be
found in Appendix B.

Let us study the devices listed in Table I and we exter-
nally drive each with driving amplitude Ω and then eval-
uate the coupler frequency for dynamic freedom. Any
amplitude associated with a ZZ-free coupler frequency
is named the freedom amplitude denoted by Ω∗. Fig-
ure 7(a) shows driving device 1 with amplitudes below
60 MHz sets total parasitic interaction to zero. Devices
2-4 show three such frequencies in a somewhat weaker
domain of freedom amplitudes, with an exciting feature
on the rightmost one, near ∼6.6 GHz. Increasing driv-
ing amplitudes does not change the strongest ωE

c , there-
fore at this frequency, not only static level repulsion ζs
is zero, but also driving assisted component ζd vanishes
since geff = 0. Devices 5 and 6 show decoupling frequen-
cies below a certain driving amplitude, adding more ZZ-
free coupler frequencies. In device 6, however, there is a
frequency domain betweenM1 andM2 in which parasitic
freedom is not expected to take place, and we indicate
it with the shaded region and we will come back to it
later. For device 7 staying beyond straddling regime, the
static ZZ freedom is only realized at a higher coupler
frequency.

A two-qubit gate is not only needed to have high fi-
delity, but also it must be fast because such gates can per-
form many operations during qubit coherence times. as
discussed above, it is vital that external driving supplies
a strong ZX interaction, mainly because the strength of
ZX interaction, i.e. αZX scales inversely with the time
that consumes to perform the gate, the so-called gate
length τ ∼ 1/αZX . Therefore the entangled mode of the
PF gate must be tuned on a coupler frequency that not
only is located on a ZZ-free boundary but also present a
short gate length. Figure 7(b) plots ZX strength at all
freedom amplitudes and shows that ZX rate is stronger
at lower ωc’s. Therefore a ZZ-free coupler frequency with
strong ZX strength can be used for ωPF/E

c . One excep-
tion is device 7 which stays out of the straddling regime
and has a weaker ZX rate, so it is not feasible to imple-
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FIG. 6. Total ZZ interaction as a function of qubits detuning frequency ∆12 and coupler frequency ωc with parameters similar
to device 2 in (a,c,e) and similar to device 6 in (b,d,f). Ω = 0 in (a,b), Ω = 20 MHz in (b,c), and Ω = 40 MHz in (e,f). Red
(blue) lines denote the labelled devices 2 (devices 6). Black boundaries are ZZ-free zones and magenta boundaries are geff -free
zones. In particular, in the absence of external microwave driving as shown in (a) and (b), the line of geff = 0 intersects static
ZZ-free borderline in two asterisk points. These points are the genuine points, and all other points on the static ZZ-free
borderlines are affine.

ment a CR-like gate and will not be discussed later.
One of the advantages of our numerical analysis is that

it can predict nonlinear correction in both ζ and αZX

denoted in Eq. (9). Perturbation theory determines the
leading order of αZX and ζd are linear and quadratic in
Ω, respectively [31]. The perturbative theory considers
higher-order terms with next natural-number exponents
above the leading terms; however, compared with the
experiment, those results are not accurate beyond leading
order [38]. Since our approach is different, we consider
higher-order corrections in real-number exponents:

ζd(Ω) = η2Ω2 + ηaΩa, with a > 2, (10)
αzx(Ω) = µ1Ω + µbΩ

b, with b > 1. (11)

Our numerical results for ζd in device 6 estimates the
exponents a and b at different coupler frequencies ωc.
The result is summarized in Fig. 8, in which far-left
points are similar to perturbative results; i.e. a = 4

in ζ and b ∼ 3 in αZX . However, there is a domain
of frequency in which a increases and nearly reaches 5.
Moreover, within the same domain ZX rate vanishes and
this makes it meaningless to calculate b exponent in that
region.

In device 6 the higher-order term of ζd has the opposite
sign of η2Ω2 +ζs and is the dominant term in the coupler
frequency domain 5.1–5.5 GHz. Therefore in this do-
main total ZZ cannot vanish. This describes why there
is a shaded area in Fig. 7(a) in device 6 where entangled
mode cannot be found. More details can be found in
Appendix D.

IV. OFF-ON-OFF ERROR MITIGATION

Switching from Idle mode to entangled mode takes
place in two steps: first coupler frequency is changed,
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(a)

(b)

FIG. 7. (a) Freedom amplitude Ω∗ as a function of the coupler
frequency in devices 1-7. (b) Corresponding ZX rate. The
shaded area between M1 and M2 indicates the absence of
dynamic ZZ freedom.

FIG. 8. Beyond 2nd (1st) order exponent of Ωa (Ωb) in ζd
(αZX) at different coupler frequency ωc for device 6. The
shaded area denotes the region where effective coupling geff is
small and starts to change its sign.

then the microwave pulse is activated. The other way
around needs to take place in the reversed order: first,
the microwave pulse is switched off, then the coupler fre-
quency is changed. In each step, there is a possibility
that quantum states accumulate errors. Although the PF
gate can effectively eliminate universal ZZ interaction, it
still suffers from unwanted transitions during coupler fre-
quency change. Moreover, limited qubit coherence time
can be another source of fidelity loss. Here we quantify
the performance of both the genuine PF gate and affine

PF gate by calculating the metric of gate fidelity.

A. Error during coupler frequency variation

For the genuine PF gate, the coupler frequency is far
detuned from the frequency of qubits; switching the mode
to entangled mode requires that the coupler frequency
is brought much closer to the qubits. While for the
affine PF gate, the coupler frequency is near qubits, then
switching the mode to entangled mode only needs a slight
change in the coupler frequency, e.g. with a WTQ whose
coherence time is nearly unchanged and comparable with
transmons [41]. Figure 9(a) sketches the two types of PF
gate implemented in device 2. In either case, to avoid
reinitialization of qubit states after a frequency change,
we can perform the frequency change so that leakage does
not take place from the computational subspace to other
energy levels. This mandates performing the coupler fre-
quency change adiabatically [49].

The leakage rate out of computational levels depends
on the ramping speed of coupler frequency dωc/dt. In
particular, if the coupler frequency is tuned by exter-
nal magnetic flux f = Φext/Φ0 with Φ0 being flux
quantum unit, the rate of coupler frequency change
can be written in terms of df/dt [21]. Here we com-
pare two protocols for the pulse envelopes to quantify
the leakage due to ωc modulation. Coherence times
of qubits and coupler are ideally assumed to be all
the same: i.e. {T (1)

1 , T
(c)
1 , T

(2)
1 } = {T (1)

2 , T
(c)
2 , T

(2)
2 } =

{200, 200, 200} µs.

1. Genuine PF gate

A genuine PF gate is a condition for the cross reso-
nance on/off switch with off mode being set for decoupled
qubits with geff = 0, where genuinely direct qubit-qubit
coupling cancels out indirect coupler-qubit coupling.

Figure 9(b) shows two pulses that we prepared for
being used on device 2: a hyperbolic tangent enve-
lope pulse in a solid line and a flat-top Gaussian en-
velope in a dashed line. The qubits are decoupled at
ωGI
c /2π =6.577 GHz. Figure 7(b) shows that αZX is

rather strong — nearly ∼5 MHz — at the frequency
4.8 GHz which we take as ωE

c /2π. Note that much
stronger αZX of nearly 10 MHz is also possible on this
device which corresponds to a 0.2 GHz smaller coupler
frequency.

2. Affine PF gate

An affine PF gate is a condition for the cross resonance
on/off switch with off mode being set for coupled qubits
with a finite geff .

Figure 9(c) shows similar two types of pulse envelope.
The difference is that for affine PF gate idle coupler
frequency ωAI

c is lower than ωE
c . On-device 2 qubits

are ZZ-free at ωAI
c /2π =4.509 GHz. This regime with
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1 < |(ω1,2−ωc)/g| < 10 and static ZZ freedom is the so-
called Quasi-Dispersive Straddling regime and has been
concluded as an optimal regime for fixed-frequency trans-
mons [50]. To make a comparison, we tune the coupler
frequency to make αZX also around 5 MHz but much
closer to ωAI

c /2π — at the frequency ωE
c /2π=4.530 GHz.

Let us denote the total time it takes for the PF gate
to start at ωI

c and return to it by t = 2τ0 + tg in which
tg is the microwave activation time in between two cou-
pler frequency changes. Each coupler frequency change
takes place during time τ0. By varying τ0, we evaluate
fidelity loss during the switch between I and E modes:
The circuit Hamiltonian is written in the qubit-coupler-
qubit Hilbert space with a maximum of two excitations
in the coupler by solving the master equation, we cal-
culate the leakage both from qubits to the coupler and
from computational subspace to higher levels. Finally,
we determine the optimized pulse for frequency change.
It is worth noting that here the coupler coherence time is
comparable to qubits, and the fidelity loss is tiny. How-
ever, if the coupler coherence time is much shorter, one
can see an obvious decrease in the fidelity of the PF gate;
see Appendix F for more details.

Figure 9(d) shows the fidelity loss of states |01〉, |10〉,
|11〉 for genuine PF gate by varying τ0 during the OFF-
ON-OFF switch without an external drive. Both pulses
show that the computational state fidelity increases by
increasing τ0. However there is a difference between the
two pulse performances. The hyperbolic tangent enve-
lope pulse which rapidly changes coupler frequency be-
tween I and E modes can further reduce the error by
raising all computational state fidelities to above 99.9%
at τ0 = 30 ns. For affine PF gate, the individual state
fidelity loss is less than 0.1% as shown in Fig. 9(e); in
particular, the shortest rise/fall time for achieving 99.9%
total state fidelity is τ0 = 10 ns for the hyperbolic tangent
envelope.

B. Gate error during external driving

In the two pulses discussed in Fig. 7(a) once the cou-
pler frequency is changed to a lower value the circuit
is ready to experience a ZZ-free ZX-interaction. This
takes place by turning on the microwave during time tg.
The length of tg for ZX gate is governed by microwave
driving. During the time tg the qubit pairs enjoy abso-
lute freedom from total ZZ interaction. However, gate
fidelity is limited by qubit coherence times.

Let us indicate here that we do not consider the option
of echoing the microwave driving as this doubles the gate
length. Instead, we follow the recent practice at IBM
where a single cross resonance driving is applied on qubits
followed by a virtual Z rotation [47]. We also take the
example of ZX90 pulse for this typical analysis. In this
pulse, the relation between αZX and the length of the flat
top in the microwave pulse τ has been discussed before
Section (III), i.e. τ = 1/4αZX . Here we consider the
microwave pulses are round squared with ∼20 ns rise and
∼20 ns fall times as shown in the inset of Fig. 10. Thus

4.5 5.0 5.5 6.0 6.5
-1000

-100

-10

0

10

100

1000

ωc (GHz)

St
ati
cZ
Z
ζ s

(k
Hz

)

Genuine PF

Affine PF

!"#$!"%$

!"&!"&

4.5 5.0 5.5 6.0 6.5
-0.2

-0.1

0.0

0.1

0.2

ωc/2π (GHz)

(a)

Hyperbolic Tangent

Gaussian

tg𝜏0 𝜏0

Genuine PF
6.577

4.8

4.
5

5.
0

5.
5

6.
0

6.
5

-
0.
2

-
0.
1

0.
0

0.
1

0.
2

ω c
/2
π
(G
H
z)

(b) 4.530

4.509

Hyperbolic Tangent

Gaussian

tg𝜏0 𝜏0

Affine PF

4.
5

5.
0

5.
5

6.
0

6.
5

-
0.
2

-
0.
1

0.
0

0.
1

0.
2

ω c
/2
π
(G
H
z)

(c)

○
○

○

○

○

○

○

×
×

×

×

×

×

×

⊳

⊳

⊳

⊳

⊳ ⊳ ⊳

○ ○ ○ ○ ○ ○ ○

× × × × × × ×

⊳
⊳

⊳ ⊳ ⊳
⊳

⊳

○ |01〉
× |10〉
⊳ |11〉

Genuine PF

5 10 15 20 25 30 35

0.1

0.01

0.001

τ0 (ns)

F
id
el
it
y
L
os
s

(d)

○

○ ○

○

○
○

○

×

× ×

×
× ×

×

⊳

⊳

⊳

⊳

⊳

⊳

⊳

○
○

○

○ ○

○
○

×
×

×

× × × ×

⊳

⊳

⊳

⊳ ⊳
⊳ ⊳

○ |01〉
× |10〉
⊳ |11〉

Affine PF

5 10 15 20 25 30 35

0.005

0.001

0.0005

0.0001

τ0 (ns)

F
id
el
it
y
L
os
s

(e)

FIG. 9. (a) Sketches of two types of PF gate: start from idle
mode, switch to the entangled mode and finally go back to
the idle mode. (b) Coupler frequency switching protocols for
genuine PF gate with the following two pulse envelopes: Hy-
perbolic tangent envelope (solid) and Flat-topped Gaussian
envelope (dashed). (c) Coupler frequency switching proto-
cols for affine PF gate with similar pulse envelopes. Fidelity
loss of the computational states for (d) genuine PF gate and
(e) affine PF gate due to leakage from the two pulse shapes.
Coherence times of qubit/coupler/qubit are universal 200 µs.
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the total ZX-gate length is tg = (40 + 1/4αZX [MHz]) in
nanoseconds.

For the genuine PF gate, we consider the coupler fre-
quency at E mode ωE

c to be 4.8 GHz. With these param-
eters, the ZX-gate error rates are plotted for devices 2-6
in Fig. 10(a). All error rates have an expected behaviour
as they show a minimum at a particular gate length tg
where the error rate is as low as expected only from coher-
ence time limitation where the device experiences total
ZZ freedom. Among the five devices 2-6 plotted, de-
vice 5 (a hybrid CSFQ-transmon) has the shortest gate
length and after that stands device 6 (a pair of trans-
mons with 200 MHz frequency detuning). Although the
minimum error rate cannot be eliminated without per-
fecting individual qubits, it indicates the possibility of
ZX interaction gate with fidelity as high as 99.9%. Note
that there is a limitation on the gate length behaving as
a cutoff in Fig. 10, see Ref. [31] for more details.

For the affine PF gate, we tune the coupler frequency
such that the ZX rate in devices 2-4 is the same as that
in PF-G gate at corresponding freedom amplitude, and
plot the error rate in Fig. 10(b). The difference compared
to the genuine PF gate is the coupler is only tuned in a
narrow domain, e.g. 50 MHz, using a WTQ, which can
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FIG. 10. (a) Genuine PF gate error during external driving
versus gate length tg. The coupler frequency is parked at
ωc/2π = 4.8 GHz. The inset plot is the round squared CR
pulse shape with ∼20 ns rise and ∼20 ns fall times. (b) Affine
PF gate error during external driving versus gate length tg.
The coupler frequency is parked at 4.472, 4.530, 4.658, and
4.731 GHz for devices 1-4.

effectively suppress decoherence from flux noise. More-
over, the required driving amplitude for the same gate
duration is weaker, and the total ZZ is smaller and less
detrimental to the gate fidelity. Here we also study de-
vice 1 with the same qubit detuning as device 2. Fig-
ure 10(b) shows that device 1 enables the affine PF gate
with a more substantial ZX rate and therefore shorter
gate length and less error rate.

Summing the error rate from both rise/fall times and
decoherence, all together for device 2 one can estimate a
minimum total time length of 95 ns long affine PF gate
that takes Q1 and Q2 form a ZZ-free affine idle mode
to entangled mode and returns it to original affine idle
mode only by weakly tuning the coupler. The idle-to-
idle error rate during the affine PF gate time of tg + 2τ0
will be about 0.1%. While for the genuine PF gate, the
minimum gate length is 135 ns with 99.7% gate fidelity.

The length of the PF gate can become even shorter if
the microwave rise and fall times combine the two switch-
ing coupler frequency times. This can save up to 40 ns
from the gate length for the example discussed above.
Theoretically, such a time-saving needs careful analysis
in optimal control theory, which goes beyond the scope
of this paper; however experimentally it can be investi-
gated.

V. SUMMARY

To summarize, we propose an error-protected CR gate
by combining idling and entangling gates. This gate
can safely switch qubits states between idle and ZX-
entangled modes, and once at both modes, quantum
states do not accumulate conditional ZZ phase error
in time. By zeroing ZZ in both modes, qubits before,
during, and after entanglement are safely phase-locked
to their state. This gate can be realized in supercon-
ducting circuits by combining tunable circuit parameters
and external driving in two ways: 1) At genuine idle
mode, tuning circuit parameter makes qubits decoupled
and therefore, the static ZZ interaction vanishes. At en-
tangled mode, the static ZZ interaction is cancelled by a
microwave-assisted ZZ component so that qubits are left
only with the operation of ZX-interaction; 2) At affine
idle mode qubits are strongly coupled, but the level re-
pulsions from both sides of computational space cancel
each other. At entangled mode, qubits ZX-interact with
zero-ZZ.

We evaluate a typical time length for the PF gate once
its fidelity is only limited by qubit coherence times. In
a complete operational cycle from OFF to OFF switch,
passing once through an entangled mode, the affine PF
gate is as short as 95 ns, with the overall error budget
rate being about 0.1%.

We show that this gate is universally applicable for all
types of superconducting qubits, such as all transmon or
hybrid circuits, and certainly not limited to frequencies
in the dispersive regime. The PF gate will pave a new
way to implement high-quality quantum computation in
large-scale scalable quantum processors.
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Appendix A: Comparing numerical and
perturbation methods

The circuit Hamiltonian in the lab frame is written in
the form of multilevel systems as

H0 =
∑

i=1,2,c

∑
n

ωi(ni)|ni + 1〉〈ni + 1|+
∑
i<j

∑
n√

(ni + 1)(nj + 1)gij (|ni, nj〉〈ni + 1, nj + 1|

−|ni + 1, nj〉〈ni, nj + 1|+H.c.) , (A1)

where ωi(ni) = Ei(ni + 1)−Ei(ni) and δi(ni) = Ei(ni +
2) − 2Ei(ni + 1) + Ei(ni) with Ei(ni) being the bare
energy of level n for subsystem i (i = 1, 2, c). Especially,
frequency and anharmonicity can be simplified as ωi(0) =
ωi and δi(0) = δi.

We evaluate static ZZ on the seven devices listed in
Table I by fully diagonalizing the circuit Hamiltonian and
plotting results in Fig. 5. We also compare static ZZ in-
teraction in device 2 with the following three methods:
numeric simulation (Numeric), NPAD [44] and SWT.
Figure 11 shows the static ZZ at the lower x axis for
the coupler frequency, as well as geff at the upper x axis
for the effective coupling strength.
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FIG. 11. Static ZZ interaction versus coupler frequency,
SWT result is from Eq. (5), NPAD makes use of the Jacobi
iteration [44] and exact result is obtained by diagonalizing the
Hamiltonian in Eq. (A1). The top axis is the corresponding
effective coupling geff . The used circuit parameters are the
same as device 2 with α1 = α2 = 0.022.

Appendix B: Driven Hamiltonian

When microwave drive is on, CR driving Hamiltonian
Hd = Ω cos(ω̃2t) (|n1〉〈n1 + 1|+ |n1 + 1〉〈n1|) needs to be

transferred to the same regime as the qubit Hamiltonian.
In the rotating frame the total Hamiltonian is

Hr = W †(H̃0 + H̃d)W − iW †Ẇ . (B1)

where H̃0 = U†H0U with U being the unitary op-
erator that fully diagonalizes H0, H̃d = U†HdU and
W =

∑
i=1,2,c

∑
n exp(−iωdtn̂i)|ni〉〈ni|. For simplicity

we assume g1c = g2c = g, g12 = 0 and δ1 = δ2 = δ, the
transition rates in Eq. (3) then are derived from pertur-
bation theory and listed in Table IV.

In the entangled mode only qubits are encoded; we can
further simplify the total Hamiltonian by decoupling the
tunable coupler, block diagonalizing the Hamiltonian and
then rewriting it in terms of Pauli matrices as discussed
in Sec. III B.

TABLE IV: Transition rates

λ1 −g2δ/2∆12∆2(∆12 + δ)
λ2 −gδ/2∆1(∆1 + δ)

λ3 −
√

2g2δ/∆12(∆12 − δ)(∆2 + δ)
λ4 −g/2∆1

λ5 −g2δ/
√

2∆12∆2(∆12 + δ)

λ6 gδ/
√

2∆1(∆1 + δ)
λ7 −g2(∆2 + δc)/2∆12∆2(∆2 − δc)
λ8 −g/

√
2(∆1 − δc)

λ9 −gδ/
√

2∆1(∆1 + δ)
λ10 g2/∆2(∆12 + δ)
λ11 −g2δ/∆12(∆12 − δ)(∆2 + δ)

Appendix C: Dynamic ZZ freedom

Figure 12 shows how the driving amplitude Ω impacts
the total ZZ interaction. In device 2, static ZZ interac-
tion exhibits three zero ZZ points in terms of the cou-
pler frequency. Increasing the driving amplitude makes
the total ZZ interaction smaller and annihilates two of
the zero ZZ points, leaving only one ωGI

c . However, the
behaviour of device 6 is the opposite; the external drive
makes it possible to realize ZZ freedom beyond the only
ωGI
c point.
To show how the computational states accumulate con-

ditional phase error, we plot exp(iζτp) in devices 2 and
6 during the idling periods of duration τp in Fig. 13.
Usually such fringes can be measured by performing a
Ramsey-like experiment on the target qubit to validate
the ZZ cancellation [29].

One can see that device 2 does not accumulate condi-
tional phase at two additional coupler frequencies beyond
geff = 0 as shown in Fig. 13(a). Figure 13(c) shows that
these two ZZ-free coupler frequency points reduce to one
at the critical amplitude Ω = 47 MHz. Above this am-
plitude, i.e. Ω = 60 MHz in Fig. 13(e), the circuit can be
free from parasitic ZZ interaction only at ωGI

c , indicat-
ing that the idle mode is robust against external driving.
However, device 6 shows the opposite phenomenon. At
the idle mode device 6 is only ZZ-free at ωGI

c as shown
in Fig. 13(b). When driving amplitude is increased, ZZ-
freedom can be found in additional coupler frequencies
as shown in Fig. 13(d) and 13(f).
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FIG. 12. Total ZZ interactions versus coupler frequency at
different driving amplitude on (a) device 2 and (b) device 6.

Appendix D: Impact of Higher order correction

Figure 14(a) and 14(b) show total ZZ interaction and
ZX rate in device 6 at different coupler frequencies.
Dashed lines indicate the trend of the Pauli coefficients
without higher order correction (a, b = 0). However, in
reality corrections from higher levels contribute such that
ZZ curves become flatter and finally purely negative with
increasing coupling frequency. While the ZX rate de-
creases from positive to negative continuously due to the
sign change of geff . The normalized higher-order terms
are evaluated and plotted in Fig. 14(c) and 14(d). In the
logarithmic scale, these higher-order terms are almost lin-
ear at lower driving amplitude and become flatter with
increasing driving amplitude Ω; the slopes also rise with
the coupler frequency. Moreover, when the coupler fre-
quency is tuned to be around ωGI

c , effective coupling geff

is relatively weak and will change its sign. Since η2
∝∼ g

2
eff

and µ1
∝∼ geff are extremely small in the vicinity of the

idle coupler frequency ωI
c, higher-order terms contribute

dominantly at weak driving amplitude.

Appendix E: Quadratic factor

Naively, we can assume the dynamic ZZ interaction is
proportional to Ω2 as the coupler frequency is away from
ωGI
c . Figure 15(a) shows that such normalized driven

part ζd/Ω2 in device 1-6 dramatically increases when the
coupler frequency is close to the qubits, but approaches
zero at higher ωc. In devices 1-4, the sign of quadratic
factor is always negative, while in devices 5 and 6, it is

positive. Figure 15(b) shows that the sign of dynamic ZZ
interaction changes with the qubit-qubit detuning with
respect to perturbatively ζd ∝∼ 1/(∆12 + δ1/2).

Appendix F: Impact of Coupler Decoherence

In the case that coupler coherence time is much shorter
than qubits e.g. {T (1)

1 , T
(c)
1 , T

(2)
1 } = {T (1)

2 , T
(c)
2 , T

(2)
2 } =

{200, 2, 200} µs, similarly we evaluate the fidelity loss of
computational states in Fig. 16. Compared to Fig. 9, the
fidelity loss for the genuine PF gate remains almost the
same while that for the affine PF gate dramatically in-
creases. This is because if the coupler frequency is far
detuning from qubits, it does not hybridize the eigen-
states of qubits and thus is irrelevant to the gate per-
formance. At the same time, it matters if the coupler
frequency is close to qubits and heavily hybridizes the
eigenstates. Figure 16 (c) and (d) evaluate the popu-
lation of noncomputational levels |010〉, |110〉, |011〉 ini-
tialized at |100〉/|001〉, |101〉 and |101〉, separately. One
can see a significant increase in the population when the
coupler coherence time is much shorter. However, us-
ing a weakly tunable coupler whose coherence time is
only slightly changed and comparable with the transmon
qubits does not suffer from such kind of problem, see Ref.
[24].
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FIG. 13. Accumulated conditional phase error on computational states on (a,c,e) device 2 at driving amplitude Ω = 0,
Ω = 47 MHz and Ω = 60 MHz, and on (b,d,f) device 6 at driving amplitude Ω = 0, Ω = 42.3 MHz and Ω = 60 MHz,
respectively. Green dashed lines indicate the ZZ-free coupler frequency.
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