000009436 001__ 9436
000009436 005__ 20210129210458.0
000009436 0247_ $$2pmid$$apmid:20461231
000009436 0247_ $$2pmc$$apmc:PMC2866503
000009436 0247_ $$2DOI$$a10.3389/neuro.09.009.2010
000009436 0247_ $$2WOS$$aWOS:000277978200007
000009436 037__ $$aPreJuSER-9436
000009436 041__ $$aeng
000009436 082__ $$a610
000009436 084__ $$2WoS$$aNeurosciences
000009436 084__ $$2WoS$$aPsychology
000009436 1001_ $$0P:(DE-Juel1)VDB1883$$aPalm, C.$$b0$$uFZJ
000009436 245__ $$aTowards ultra-high resolution fibre tract mapping of the human brain - registration of polarised light images and reorientation of fibre vectors
000009436 260__ $$aLausanne$$bFrontiers Research Foundation$$c2010
000009436 300__ $$a1-16
000009436 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000009436 3367_ $$2DataCite$$aOutput Types/Journal article
000009436 3367_ $$00$$2EndNote$$aJournal Article
000009436 3367_ $$2BibTeX$$aARTICLE
000009436 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000009436 3367_ $$2DRIVER$$aarticle
000009436 440_0 $$022205$$aFrontiers in Human Neuroscience$$v4$$x1662-5161$$y9
000009436 500__ $$aThe authors would like to thank M. Cremer, Research Centre Julich, Germany, as well as U. Blohm and U. Opfermann, University Dusseldorf, Germany, for the brain preparation. We also thank J. Hipwell, Centre of Medical Image Computing (CMIC), University College London, GB, for providing the vector visualisation software. This work was partly supported by the Initiative and Network Fund of the Helmholtz Association within the Helmholtz Alliance on Systems Biology.
000009436 520__ $$aPolarised light imaging (PLI) utilises the birefringence of the myelin sheaths in order to visualise the orientation of nerve fibres in microtome sections of adult human post-mortem brains at ultra-high spatial resolution. The preparation of post-mortem brains for PLI involves fixation, freezing and cutting into 100-mum-thick sections. Hence, geometrical distortions of histological sections are inevitable and have to be removed for 3D reconstruction and subsequent fibre tracking. We here present a processing pipeline for 3D reconstruction of these sections using PLI derived multimodal images of post-mortem brains. Blockface images of the brains were obtained during cutting; they serve as reference data for alignment and elimination of distortion artefacts. In addition to the spatial image transformation, fibre orientation vectors were reoriented using the transformation fields, which consider both affine and subsequent non-linear registration. The application of this registration and reorientation approach results in a smooth fibre vector field, which reflects brain morphology. PLI combined with 3D reconstruction and fibre tracking is a powerful tool for human brain mapping. It can also serve as an independent method for evaluating in vivo fibre tractography.
000009436 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems (FUEK409)$$cFUEK409$$x0
000009436 536__ $$0G:(DE-HGF)POF2-89574$$a89574 - Theory, modelling and simulation (POF2-89574)$$cPOF2-89574$$fPOF II T$$x1
000009436 588__ $$aDataset connected to Web of Science, Pubmed
000009436 650_7 $$2WoSType$$aJ
000009436 65320 $$2Author$$ahuman brain atlas
000009436 65320 $$2Author$$apolarised light imaging
000009436 65320 $$2Author$$aimage registration
000009436 65320 $$2Author$$afibre orientation map
000009436 65320 $$2Author$$avector reorientation
000009436 7001_ $$0P:(DE-Juel1)VDB67318$$aAxer, M.$$b1$$uFZJ
000009436 7001_ $$0P:(DE-Juel1)131642$$aGräßel, D.$$b2$$uFZJ
000009436 7001_ $$0P:(DE-Juel1)VDB261$$aDammers, J.$$b3$$uFZJ
000009436 7001_ $$0P:(DE-Juel1)VDB91674$$aLindemeyer, J.$$b4$$uFZJ
000009436 7001_ $$0P:(DE-Juel1)131714$$aZilles, K.$$b5$$uFZJ
000009436 7001_ $$0P:(DE-Juel1)VDB2211$$aPietrzyk, U.$$b6$$uFZJ
000009436 7001_ $$0P:(DE-Juel1)131631$$aAmunts, K.$$b7$$uFZJ
000009436 773__ $$0PERI:(DE-600)2425477-0$$a10.3389/neuro.09.009.2010$$gp. 1-16$$p1-16$$q1-16$$tFrontiers in human neuroscience$$x1662-5161$$y2010
000009436 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2866503
000009436 909CO $$ooai:juser.fz-juelich.de:9436$$pVDB
000009436 9132_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000009436 9132_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x1
000009436 9131_ $$0G:(DE-HGF)POF2-89574$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vTheory, modelling and simulation$$x1
000009436 9141_ $$y2010
000009436 915__ $$0StatID:(DE-HGF)0020$$aNo peer review
000009436 9201_ $$0I:(DE-Juel1)INM-2-20090406$$gINM$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000009436 9201_ $$0I:(DE-Juel1)INM-1-20090406$$gINM$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x1
000009436 9201_ $$0I:(DE-Juel1)INM-4-20090406$$gINM$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x2
000009436 9201_ $$0I:(DE-82)080010_20140620$$gJARA$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x3
000009436 970__ $$aVDB:(DE-Juel1)119186
000009436 980__ $$aVDB
000009436 980__ $$aConvertedRecord
000009436 980__ $$ajournal
000009436 980__ $$aI:(DE-Juel1)INM-2-20090406
000009436 980__ $$aI:(DE-Juel1)INM-1-20090406
000009436 980__ $$aI:(DE-Juel1)INM-4-20090406
000009436 980__ $$aI:(DE-82)080010_20140620
000009436 980__ $$aUNRESTRICTED
000009436 981__ $$aI:(DE-Juel1)INM-1-20090406
000009436 981__ $$aI:(DE-Juel1)INM-4-20090406
000009436 981__ $$aI:(DE-Juel1)VDB1046