001     9436
005     20210129210458.0
024 7 _ |2 pmid
|a pmid:20461231
024 7 _ |2 pmc
|a pmc:PMC2866503
024 7 _ |2 DOI
|a 10.3389/neuro.09.009.2010
024 7 _ |2 WOS
|a WOS:000277978200007
037 _ _ |a PreJuSER-9436
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Neurosciences
084 _ _ |2 WoS
|a Psychology
100 1 _ |a Palm, C.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB1883
245 _ _ |a Towards ultra-high resolution fibre tract mapping of the human brain - registration of polarised light images and reorientation of fibre vectors
260 _ _ |a Lausanne
|b Frontiers Research Foundation
|c 2010
300 _ _ |a 1-16
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Frontiers in Human Neuroscience
|x 1662-5161
|0 22205
|y 9
|v 4
500 _ _ |a The authors would like to thank M. Cremer, Research Centre Julich, Germany, as well as U. Blohm and U. Opfermann, University Dusseldorf, Germany, for the brain preparation. We also thank J. Hipwell, Centre of Medical Image Computing (CMIC), University College London, GB, for providing the vector visualisation software. This work was partly supported by the Initiative and Network Fund of the Helmholtz Association within the Helmholtz Alliance on Systems Biology.
520 _ _ |a Polarised light imaging (PLI) utilises the birefringence of the myelin sheaths in order to visualise the orientation of nerve fibres in microtome sections of adult human post-mortem brains at ultra-high spatial resolution. The preparation of post-mortem brains for PLI involves fixation, freezing and cutting into 100-mum-thick sections. Hence, geometrical distortions of histological sections are inevitable and have to be removed for 3D reconstruction and subsequent fibre tracking. We here present a processing pipeline for 3D reconstruction of these sections using PLI derived multimodal images of post-mortem brains. Blockface images of the brains were obtained during cutting; they serve as reference data for alignment and elimination of distortion artefacts. In addition to the spatial image transformation, fibre orientation vectors were reoriented using the transformation fields, which consider both affine and subsequent non-linear registration. The application of this registration and reorientation approach results in a smooth fibre vector field, which reflects brain morphology. PLI combined with 3D reconstruction and fibre tracking is a powerful tool for human brain mapping. It can also serve as an independent method for evaluating in vivo fibre tractography.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|x 0
|c FUEK409
|a Funktion und Dysfunktion des Nervensystems (FUEK409)
536 _ _ |a 89574 - Theory, modelling and simulation (POF2-89574)
|0 G:(DE-HGF)POF2-89574
|c POF2-89574
|x 1
|f POF II T
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a human brain atlas
653 2 0 |2 Author
|a polarised light imaging
653 2 0 |2 Author
|a image registration
653 2 0 |2 Author
|a fibre orientation map
653 2 0 |2 Author
|a vector reorientation
700 1 _ |a Axer, M.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB67318
700 1 _ |a Gräßel, D.
|b 2
|u FZJ
|0 P:(DE-Juel1)131642
700 1 _ |a Dammers, J.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB261
700 1 _ |a Lindemeyer, J.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB91674
700 1 _ |a Zilles, K.
|b 5
|u FZJ
|0 P:(DE-Juel1)131714
700 1 _ |a Pietrzyk, U.
|b 6
|u FZJ
|0 P:(DE-Juel1)VDB2211
700 1 _ |a Amunts, K.
|b 7
|u FZJ
|0 P:(DE-Juel1)131631
773 _ _ |a 10.3389/neuro.09.009.2010
|g p. 1-16
|p 1-16
|q 1-16
|0 PERI:(DE-600)2425477-0
|t Frontiers in human neuroscience
|y 2010
|x 1662-5161
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2866503
909 C O |o oai:juser.fz-juelich.de:9436
|p VDB
913 2 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 1
913 1 _ |a DE-HGF
|0 G:(DE-HGF)POF2-89574
|v Theory, modelling and simulation
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0020
|a No peer review
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|g INM
|x 0
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|g INM
|x 1
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|g INM
|x 2
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l Jülich-Aachen Research Alliance - Translational Brain Medicine
|g JARA
|x 3
970 _ _ |a VDB:(DE-Juel1)119186
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-1-20090406
981 _ _ |a I:(DE-Juel1)INM-4-20090406
981 _ _ |a I:(DE-Juel1)VDB1046


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21