001     9446
005     20180208223645.0
024 7 _ |2 pmid
|a pmid:22070728
024 7 _ |2 DOI
|a 10.1111/j.1365-3040.2011.02460.x
024 7 _ |2 WOS
|a WOS:000302541100004
037 _ _ |a PreJuSER-9446
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Plant Sciences
100 1 _ |a Füllner, K.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Vertical gradient in soil temperature stimulates development and increases biomass accumulation in barley
260 _ _ |a Oxford [u.a.]
|b Wiley-Blackwell
|c 2012
300 _ _ |a 884 - 892
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Plant, Cell and Environment
|x 0140-7791
|0 4976
|y 5
|v 35
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We have detailed knowledge from controlled environment studies on the influence of root temperature on plant performance, growth and morphology. However, in all studies root temperature was kept spatially uniform, which motivated us to test whether a vertical gradient in soil temperature affected development and biomass production. Roots of barley seedlings were exposed to three uniform temperature treatments (10, 15 or 20°C) or to a vertical gradient (20-10°C from top to bottom). Substantial differences in plant performance, biomass production and root architecture occurred in the 30-day-old plants. Shoot and root biomass of plants exposed to vertical temperature gradient increased by 144 respectively, 297%, compared with plants grown at uniform root temperature of 20°C. Additionally the root system was concentrated in the upper 10cm of the soil substrate (98% of total root biomass) in contrast to plants grown at uniform soil temperature of 20°C (86% of total root biomass). N and C concentrations in plant roots grown in the gradient were significantly lower than under uniform growth conditions. These results are important for the transferability of 'normal' greenhouse experiments where generally soil temperature is not controlled or monitored and open a new path to better understand and experimentally assess root-shoot interactions.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Biomass
650 _ 2 |2 MeSH
|a Carbon: analysis
650 _ 2 |2 MeSH
|a Carbon: metabolism
650 _ 2 |2 MeSH
|a Hordeum: growth & development
650 _ 2 |2 MeSH
|a Hordeum: physiology
650 _ 2 |2 MeSH
|a Nitrogen: analysis
650 _ 2 |2 MeSH
|a Nitrogen: metabolism
650 _ 2 |2 MeSH
|a Plant Leaves: growth & development
650 _ 2 |2 MeSH
|a Plant Roots: growth & development
650 _ 2 |2 MeSH
|a Plant Roots: physiology
650 _ 2 |2 MeSH
|a Plant Shoots: growth & development
650 _ 2 |2 MeSH
|a Plant Shoots: physiology
650 _ 2 |2 MeSH
|a Seedling: growth & development
650 _ 2 |2 MeSH
|a Soil: chemistry
650 _ 2 |2 MeSH
|a Temperature
650 _ 2 |2 MeSH
|a Time Factors
650 _ 2 |2 MeSH
|a Water
650 _ 7 |0 0
|2 NLM Chemicals
|a Soil
650 _ 7 |0 7440-44-0
|2 NLM Chemicals
|a Carbon
650 _ 7 |0 7727-37-9
|2 NLM Chemicals
|a Nitrogen
650 _ 7 |0 7732-18-5
|2 NLM Chemicals
|a Water
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Hordeum vulgare
653 2 0 |2 Author
|a C and N distribution
653 2 0 |2 Author
|a root diameter
653 2 0 |2 Author
|a root growth
653 2 0 |2 Author
|a root length
653 2 0 |2 Author
|a shoot development
653 2 0 |2 Author
|a soil temperature gradient
653 2 0 |2 Author
|a uniform soil temperature
700 1 _ |a Temperton, V. M.
|b 1
|u FZJ
|0 P:(DE-Juel1)129409
700 1 _ |a Rascher, U.
|b 2
|u FZJ
|0 P:(DE-Juel1)129388
700 1 _ |a Jahnke, S.
|b 3
|u FZJ
|0 P:(DE-Juel1)129336
700 1 _ |a Rist, R.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Schurr, U.
|b 5
|u FZJ
|0 P:(DE-Juel1)129402
700 1 _ |a Kuhn, A. J.
|b 6
|u FZJ
|0 P:(DE-Juel1)129349
773 _ _ |a 10.1111/j.1365-3040.2011.02460.x
|g Vol. 35, p. 884 - 892
|p 884 - 892
|q 35<884 - 892
|0 PERI:(DE-600)2020843-1
|t Plant, cell & environment
|v 35
|y 2012
|x 0140-7791
856 7 _ |u http://dx.doi.org/10.1111/j.1365-3040.2011.02460.x
909 C O |o oai:juser.fz-juelich.de:9446
|p VDB
913 1 _ |b Erde und Umwelt
|k P24
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-Juel1)FUEK407
|2 G:(DE-HGF)POF2-200
|v Terrestrische Umwelt
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
914 1 _ |y 2012
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
920 1 _ |k IBG-2
|l Pflanzenwissenschaften
|g IBG
|0 I:(DE-Juel1)IBG-2-20101118
|x 1
970 _ _ |a VDB:(DE-Juel1)119226
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21