001     9450
005     20240610120050.0
017 _ _ |a This version is available at the following Publisher URL: http://jcp.aip.org
024 7 _ |a 10.1063/1.1502242
|2 DOI
024 7 _ |a WOS:000178317300044
|2 WOS
024 7 _ |a 2128/1468
|2 Handle
037 _ _ |a PreJuSER-9450
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Physics, Atomic, Molecular & Chemical
100 1 _ |a Schilling, T.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB1412
245 _ _ |a Wetting in ternary mixtures - with and without amphiphiles
260 _ _ |a Melville, NY
|b American Institute of Physics
|c 2002
300 _ _ |a 7284 - 7294
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Chemical Physics
|x 0021-9606
|0 3145
|v 117
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The interfacial wetting behavior of ternary fluid mixtures is investigated, both for systems where all components have isotropic interaction potentials, as well as for systems where one component is an amphiphile. The BEG model and the corresponding two-order-parameter Ginzburg-Landau model are employed for systems without amphiphiles. We calculate the global wetting phase diagram for nonamphiphilic mixtures. In the investigated range of interaction parameters, the wetting transitions are always continuous at three-phase coexistence. The critical behavior is found to be universal in some, nonuniversal in other parts of the phase diagram. For systems with amphiphiles, two additional interaction terms are taken into account. The first models the aggregation of amphiphilic molecules at the air-water interface, the second the formation of amphiphilic bilayers in water. We find that the first term leads to a reduction of the tension of the air-water interface, and favors wetting by the water-rich phase, while the second-bilayer-term leads to a reduction of the tension of the interface between the water-rich and amphiphile-rich phases. (C) 2002 American Institute of Physics.
536 _ _ |a Kondensierte Materie
|c M02
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK242
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Gompper, G.
|b 1
|u FZJ
|0 P:(DE-Juel1)130665
773 _ _ |a 10.1063/1.1502242
|g Vol. 117, p. 7284 - 7294
|p 7284 - 7294
|q 117<7284 - 7294
|0 PERI:(DE-600)1473050-9
|t The @journal of chemical physics
|v 117
|y 2002
|x 0021-9606
856 4 _ |u https://juser.fz-juelich.de/record/9450/files/11924.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/9450/files/11924.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/9450/files/11924.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/9450/files/11924.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:9450
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k M02
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|0 G:(DE-Juel1)FUEK242
|x 0
914 1 _ |y 2002
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k IFF-TH-II
|l Theorie II
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB31
|x 0
970 _ _ |a VDB:(DE-Juel1)11924
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406
981 _ _ |a I:(DE-Juel1)ICS-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21