000009495 001__ 9495
000009495 005__ 20200423202725.0
000009495 0247_ $$2pmid$$apmid:19968824
000009495 0247_ $$2DOI$$a10.1111/j.1365-3040.2009.02090.x
000009495 0247_ $$2WOS$$aWOS:000274412500009
000009495 037__ $$aPreJuSER-9495
000009495 041__ $$aeng
000009495 082__ $$a570
000009495 084__ $$2WoS$$aPlant Sciences
000009495 1001_ $$0P:(DE-Juel1)VDB71978$$aPoiré, R.$$b0$$uFZJ
000009495 245__ $$aRoot cooling strongly affects diel leaf growth dynamics,water and carbohydrate relations in Ricinus communis
000009495 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2010
000009495 300__ $$a408 - 417
000009495 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000009495 3367_ $$2DataCite$$aOutput Types/Journal article
000009495 3367_ $$00$$2EndNote$$aJournal Article
000009495 3367_ $$2BibTeX$$aARTICLE
000009495 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000009495 3367_ $$2DRIVER$$aarticle
000009495 440_0 $$04976$$aPlant, Cell and Environment$$v33$$x0140-7791$$y2
000009495 500__ $$aWe thank Beate Uhlig for her support during the breeding of the plants. Richard Poire thanks the International Helmholtz Research School of Biophysics and Soft Matter for the stimulating discussions emerging from this interdisciplinary study, and acknowledges the support of his PhD thesis at the Heinrich-Heine-Universitat Dusseldorf.
000009495 520__ $$aIn laboratory and greenhouse experiments with potted plants, shoots and roots are exposed to temperature regimes throughout a 24 h (diel) cycle that can differ strongly from the regime under which these plants have evolved. In the field, roots are often exposed to lower temperatures than shoots. When the root-zone temperature in Ricinus communis was decreased below a threshold value, leaf growth occurred preferentially at night and was strongly inhibited during the day. Overall, leaf expansion, shoot biomass growth, root elongation and ramification decreased rapidly, carbon fluxes from shoot to root were diminished and carbohydrate contents of both root and shoot increased. Further, transpiration rate was not affected, yet hydrostatic tensions in shoot xylem increased. When root temperature was increased again, xylem tension reduced, leaf growth recovered rapidly, carbon fluxes from shoot to root increased, and carbohydrate pools were depleted. We hypothesize that the decreased uptake of water in cool roots diminishes the growth potential of the entire plant - especially diurnally, when the growing leaf loses water via transpiration. As a consequence, leaf growth and metabolite concentrations can vary enormously, depending on root-zone temperature and its heterogeneity inside pots.
000009495 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000009495 588__ $$aDataset connected to Web of Science, Pubmed
000009495 650_2 $$2MeSH$$aCarbohydrate Metabolism
000009495 650_2 $$2MeSH$$aCarbon: metabolism
000009495 650_2 $$2MeSH$$aCircadian Rhythm
000009495 650_2 $$2MeSH$$aCold Temperature
000009495 650_2 $$2MeSH$$aPlant Leaves: growth & development
000009495 650_2 $$2MeSH$$aPlant Roots: growth & development
000009495 650_2 $$2MeSH$$aPlant Roots: physiology
000009495 650_2 $$2MeSH$$aPlant Transpiration
000009495 650_2 $$2MeSH$$aRicinus: growth & development
000009495 650_2 $$2MeSH$$aRicinus: metabolism
000009495 650_2 $$2MeSH$$aRicinus: physiology
000009495 650_2 $$2MeSH$$aWater: physiology
000009495 650_2 $$2MeSH$$aXylem: physiology
000009495 650_7 $$07440-44-0$$2NLM Chemicals$$aCarbon
000009495 650_7 $$07732-18-5$$2NLM Chemicals$$aWater
000009495 650_7 $$2WoSType$$aJ
000009495 65320 $$2Author$$a11C
000009495 65320 $$2Author$$abiomass
000009495 65320 $$2Author$$aimage analysis
000009495 65320 $$2Author$$aroot growth
000009495 65320 $$2Author$$astarch
000009495 65320 $$2Author$$asucrose
000009495 65320 $$2Author$$atranspiration
000009495 7001_ $$0P:(DE-Juel1)129397$$aSchneider, H.$$b1$$uFZJ
000009495 7001_ $$0P:(DE-Juel1)VDB67249$$aThorpe, M.R.$$b2$$uFZJ
000009495 7001_ $$0P:(DE-Juel1)129349$$aKuhn, A. J.$$b3$$uFZJ
000009495 7001_ $$0P:(DE-Juel1)129402$$aSchurr, U.$$b4$$uFZJ
000009495 7001_ $$0P:(DE-Juel1)VDB2595$$aWalter, A.$$b5$$uFZJ
000009495 773__ $$0PERI:(DE-600)2020843-1$$a10.1111/j.1365-3040.2009.02090.x$$gVol. 33, p. 408 - 417$$p408 - 417$$q33<408 - 417$$tPlant, cell & environment$$v33$$x0140-7791$$y2010
000009495 8567_ $$uhttp://dx.doi.org/10.1111/j.1365-3040.2009.02090.x
000009495 8564_ $$uhttps://juser.fz-juelich.de/record/9495/files/FZJ-9495.pdf$$yRestricted$$zPublished final document.
000009495 909CO $$ooai:juser.fz-juelich.de:9495$$pVDB
000009495 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000009495 9132_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000009495 9141_ $$y2010
000009495 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000009495 9201_ $$0I:(DE-Juel1)ICG-3-20090406$$d31.10.2010$$gICG$$kICG-3$$lPhytosphäre$$x1
000009495 9201_ $$0I:(DE-82)080011_20140620$$gJARA$$kJARA-ENERGY$$lJülich-Aachen Research Alliance - Energy$$x2
000009495 970__ $$aVDB:(DE-Juel1)119321
000009495 980__ $$aVDB
000009495 980__ $$aConvertedRecord
000009495 980__ $$ajournal
000009495 980__ $$aI:(DE-Juel1)IBG-2-20101118
000009495 980__ $$aI:(DE-82)080011_20140620
000009495 980__ $$aUNRESTRICTED
000009495 981__ $$aI:(DE-Juel1)IBG-2-20101118
000009495 981__ $$aI:(DE-Juel1)VDB1047