000009566 001__ 9566
000009566 005__ 20180208220922.0
000009566 0247_ $$2DOI$$a10.1143/JJAP.49.04DJ02
000009566 0247_ $$2WOS$$aWOS:000277301300162
000009566 037__ $$aPreJuSER-9566
000009566 041__ $$aeng
000009566 082__ $$a530
000009566 084__ $$2WoS$$aPhysics, Applied
000009566 1001_ $$0P:(DE-HGF)0$$aReiche, M.$$b0
000009566 245__ $$aSelf-Organized Si-Nanotransistors
000009566 260__ $$aTokyo$$bInst. of Pure and Applied Physics$$c2010
000009566 300__ $$a04DJ02
000009566 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000009566 3367_ $$2DataCite$$aOutput Types/Journal article
000009566 3367_ $$00$$2EndNote$$aJournal Article
000009566 3367_ $$2BibTeX$$aARTICLE
000009566 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000009566 3367_ $$2DRIVER$$aarticle
000009566 440_0 $$022861$$aJapanese Journal of Applied Physics$$v49$$x0021-4922$$y4
000009566 500__ $$aThis work was financially supported by the German Federal Ministry of Education and Research in the framework of the SiGe-TE project (contract no. 03X3541B).
000009566 520__ $$aThe realization of defined dislocation networks by hydrophobic wafer bonding allows the electrical characterization of individual dislocations. The present paper investigates the properties of such dislocations in samples containing high dislocations densities down to only six dislocations. The current induced by a single dislocation is determined by extrapolation of the current measured for various dislocation densities. Based on our present and previously reported analyses the electronic properties of individual dislocations can be inferred. The investigations show that dislocations in the channel of metal-oxide-semiconductor field-effect transistors (MOSFETs) result in increasing drain currents even at low drain and gate voltages. Because a maximum increase of the current is obtained if a single dislocation is present in the channel, arrays of MOSFETs each containing only one dislocation could be realized on the nanometer scale. The distance of the dislocations can be well controlled by wafer bonding techniques. (C) 2010 The Japan Society of Applied Physics
000009566 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000009566 588__ $$aDataset connected to Web of Science
000009566 650_7 $$2WoSType$$aJ
000009566 7001_ $$0P:(DE-HGF)0$$aKittler, M.$$b1
000009566 7001_ $$0P:(DE-Juel1)125569$$aBuca, D.$$b2$$uFZJ
000009566 7001_ $$0P:(DE-HGF)0$$aHaehnel, A.$$b3
000009566 7001_ $$0P:(DE-Juel1)VDB5539$$aZhao, Q. T.$$b4$$uFZJ
000009566 7001_ $$0P:(DE-Juel1)VDB4959$$aMantl, S.$$b5$$uFZJ
000009566 7001_ $$0P:(DE-HGF)0$$aGösele, U.$$b6
000009566 773__ $$0PERI:(DE-600)2006801-3$$a10.1143/JJAP.49.04DJ02$$gVol. 49, p. 04DJ02$$p04DJ02$$q49<04DJ02$$tJapanese journal of applied physics$$v49$$x0021-4922$$y2010
000009566 909CO $$ooai:juser.fz-juelich.de:9566$$pVDB
000009566 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000009566 9141_ $$y2010
000009566 9131_ $$0G:(DE-Juel1)FUEK412$$aDE-HGF$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000009566 9201_ $$0I:(DE-Juel1)VDB799$$d31.12.2010$$gIBN$$kIBN-1$$lHalbleiter-Nanoelektronik$$x0
000009566 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000009566 970__ $$aVDB:(DE-Juel1)119486
000009566 980__ $$aVDB
000009566 980__ $$aConvertedRecord
000009566 980__ $$ajournal
000009566 980__ $$aI:(DE-Juel1)PGI-9-20110106
000009566 980__ $$aI:(DE-82)080009_20140620
000009566 980__ $$aUNRESTRICTED
000009566 981__ $$aI:(DE-Juel1)PGI-9-20110106
000009566 981__ $$aI:(DE-Juel1)VDB881