000009566 001__ 9566 000009566 005__ 20180208220922.0 000009566 0247_ $$2DOI$$a10.1143/JJAP.49.04DJ02 000009566 0247_ $$2WOS$$aWOS:000277301300162 000009566 037__ $$aPreJuSER-9566 000009566 041__ $$aeng 000009566 082__ $$a530 000009566 084__ $$2WoS$$aPhysics, Applied 000009566 1001_ $$0P:(DE-HGF)0$$aReiche, M.$$b0 000009566 245__ $$aSelf-Organized Si-Nanotransistors 000009566 260__ $$aTokyo$$bInst. of Pure and Applied Physics$$c2010 000009566 300__ $$a04DJ02 000009566 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000009566 3367_ $$2DataCite$$aOutput Types/Journal article 000009566 3367_ $$00$$2EndNote$$aJournal Article 000009566 3367_ $$2BibTeX$$aARTICLE 000009566 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000009566 3367_ $$2DRIVER$$aarticle 000009566 440_0 $$022861$$aJapanese Journal of Applied Physics$$v49$$x0021-4922$$y4 000009566 500__ $$aThis work was financially supported by the German Federal Ministry of Education and Research in the framework of the SiGe-TE project (contract no. 03X3541B). 000009566 520__ $$aThe realization of defined dislocation networks by hydrophobic wafer bonding allows the electrical characterization of individual dislocations. The present paper investigates the properties of such dislocations in samples containing high dislocations densities down to only six dislocations. The current induced by a single dislocation is determined by extrapolation of the current measured for various dislocation densities. Based on our present and previously reported analyses the electronic properties of individual dislocations can be inferred. The investigations show that dislocations in the channel of metal-oxide-semiconductor field-effect transistors (MOSFETs) result in increasing drain currents even at low drain and gate voltages. Because a maximum increase of the current is obtained if a single dislocation is present in the channel, arrays of MOSFETs each containing only one dislocation could be realized on the nanometer scale. The distance of the dislocations can be well controlled by wafer bonding techniques. (C) 2010 The Japan Society of Applied Physics 000009566 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0 000009566 588__ $$aDataset connected to Web of Science 000009566 650_7 $$2WoSType$$aJ 000009566 7001_ $$0P:(DE-HGF)0$$aKittler, M.$$b1 000009566 7001_ $$0P:(DE-Juel1)125569$$aBuca, D.$$b2$$uFZJ 000009566 7001_ $$0P:(DE-HGF)0$$aHaehnel, A.$$b3 000009566 7001_ $$0P:(DE-Juel1)VDB5539$$aZhao, Q. T.$$b4$$uFZJ 000009566 7001_ $$0P:(DE-Juel1)VDB4959$$aMantl, S.$$b5$$uFZJ 000009566 7001_ $$0P:(DE-HGF)0$$aGösele, U.$$b6 000009566 773__ $$0PERI:(DE-600)2006801-3$$a10.1143/JJAP.49.04DJ02$$gVol. 49, p. 04DJ02$$p04DJ02$$q49<04DJ02$$tJapanese journal of applied physics$$v49$$x0021-4922$$y2010 000009566 909CO $$ooai:juser.fz-juelich.de:9566$$pVDB 000009566 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000009566 9141_ $$y2010 000009566 9131_ $$0G:(DE-Juel1)FUEK412$$aDE-HGF$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0 000009566 9201_ $$0I:(DE-Juel1)VDB799$$d31.12.2010$$gIBN$$kIBN-1$$lHalbleiter-Nanoelektronik$$x0 000009566 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1 000009566 970__ $$aVDB:(DE-Juel1)119486 000009566 980__ $$aVDB 000009566 980__ $$aConvertedRecord 000009566 980__ $$ajournal 000009566 980__ $$aI:(DE-Juel1)PGI-9-20110106 000009566 980__ $$aI:(DE-82)080009_20140620 000009566 980__ $$aUNRESTRICTED 000009566 981__ $$aI:(DE-Juel1)PGI-9-20110106 000009566 981__ $$aI:(DE-Juel1)VDB881