001     9566
005     20180208220922.0
024 7 _ |2 DOI
|a 10.1143/JJAP.49.04DJ02
024 7 _ |2 WOS
|a WOS:000277301300162
037 _ _ |a PreJuSER-9566
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |0 P:(DE-HGF)0
|a Reiche, M.
|b 0
245 _ _ |a Self-Organized Si-Nanotransistors
260 _ _ |a Tokyo
|b Inst. of Pure and Applied Physics
|c 2010
300 _ _ |a 04DJ02
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 22861
|a Japanese Journal of Applied Physics
|v 49
|x 0021-4922
|y 4
500 _ _ |a This work was financially supported by the German Federal Ministry of Education and Research in the framework of the SiGe-TE project (contract no. 03X3541B).
520 _ _ |a The realization of defined dislocation networks by hydrophobic wafer bonding allows the electrical characterization of individual dislocations. The present paper investigates the properties of such dislocations in samples containing high dislocations densities down to only six dislocations. The current induced by a single dislocation is determined by extrapolation of the current measured for various dislocation densities. Based on our present and previously reported analyses the electronic properties of individual dislocations can be inferred. The investigations show that dislocations in the channel of metal-oxide-semiconductor field-effect transistors (MOSFETs) result in increasing drain currents even at low drain and gate voltages. Because a maximum increase of the current is obtained if a single dislocation is present in the channel, arrays of MOSFETs each containing only one dislocation could be realized on the nanometer scale. The distance of the dislocations can be well controlled by wafer bonding techniques. (C) 2010 The Japan Society of Applied Physics
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a Kittler, M.
|b 1
700 1 _ |0 P:(DE-Juel1)125569
|a Buca, D.
|b 2
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Haehnel, A.
|b 3
700 1 _ |0 P:(DE-Juel1)VDB5539
|a Zhao, Q. T.
|b 4
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB4959
|a Mantl, S.
|b 5
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Gösele, U.
|b 6
773 _ _ |0 PERI:(DE-600)2006801-3
|a 10.1143/JJAP.49.04DJ02
|g Vol. 49, p. 04DJ02
|p 04DJ02
|q 49<04DJ02
|t Japanese journal of applied physics
|v 49
|x 0021-4922
|y 2010
909 C O |o oai:juser.fz-juelich.de:9566
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK412
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.12.2010
|g IBN
|k IBN-1
|l Halbleiter-Nanoelektronik
|0 I:(DE-Juel1)VDB799
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)119486
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-9-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21