001     9598
005     20180208201756.0
024 7 _ |2 pmid
|a pmid:20428223
024 7 _ |2 DOI
|a 10.1038/ismej.2010.46
024 7 _ |2 WOS
|a WOS:000281663700015
037 _ _ |a PreJuSER-9598
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Ecology
084 _ _ |2 WoS
|a Microbiology
100 1 _ |0 P:(DE-HGF)0
|a He, Z.
|b 0
245 _ _ |a GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity
260 _ _ |a Basingstoke
|b Nature Publishing Group
|c 2010
300 _ _ |a 1167 - 1179
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 22241
|a The ISME Journal: Multidisciplinary Journal of Microbial Ecology
|v 4
|y 9
500 _ _ |a This work is supported by the Genomics: GTL program through the Virtual Institute of Microbial Stress and Survival (VIMSS; http://vimss.lbl.gov) as part of contract no. DE-AC02-05CH11231 between the US Department of Energy and Lawrence Berkeley National Laboratory, the United States Department of Agriculture (Project 2007-35319-18305) through NSF-USDA Microbial Observatories Program, the Environmental Remediation Science Program, the Oklahoma Bioengery Center (OBC) of State of Oklahoma, and the Oklahoma Applied Research Support (OARS), Oklahoma Center for the Advancement of Science and Technology (OCAST), the State of Oklahoma.
520 _ _ |a A new generation of functional gene arrays (FGAs; GeoChip 3.0) has been developed, with approximately 28 000 probes covering approximately 57 000 gene variants from 292 functional gene families involved in carbon, nitrogen, phosphorus and sulfur cycles, energy metabolism, antibiotic resistance, metal resistance and organic contaminant degradation. GeoChip 3.0 also has several other distinct features, such as a common oligo reference standard (CORS) for data normalization and comparison, a software package for data management and future updating and the gyrB gene for phylogenetic analysis. Computational evaluation of probe specificity indicated that all designed probes would have a high specificity to their corresponding targets. Experimental analysis with synthesized oligonucleotides and genomic DNAs showed that only 0.0036-0.025% false-positive rates were observed, suggesting that the designed probes are highly specific under the experimental conditions examined. In addition, GeoChip 3.0 was applied to analyze soil microbial communities in a multifactor grassland ecosystem in Minnesota, USA, which showed that the structure, composition and potential activity of soil microbial communities significantly changed with the plant species diversity. As expected, GeoChip 3.0 is a high-throughput powerful tool for studying microbial community functional structure, and linking microbial communities to ecosystem processes and functioning.
536 _ _ |0 G:(DE-Juel1)FUEK407
|2 G:(DE-HGF)
|a Terrestrische Umwelt
|c P24
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Bacteria: classification
650 _ 2 |2 MeSH
|a Bacteria: genetics
650 _ 2 |2 MeSH
|a Biota
650 _ 2 |2 MeSH
|a Computational Biology: methods
650 _ 2 |2 MeSH
|a DNA Gyrase: genetics
650 _ 2 |2 MeSH
|a Drug Resistance, Bacterial
650 _ 2 |2 MeSH
|a Environmental Microbiology
650 _ 2 |2 MeSH
|a Metabolic Networks and Pathways: genetics
650 _ 2 |2 MeSH
|a Metagenomics: methods
650 _ 2 |2 MeSH
|a Microarray Analysis: methods
650 _ 2 |2 MeSH
|a Oligonucleotide Array Sequence Analysis: methods
650 _ 2 |2 MeSH
|a Oligonucleotide Probes: genetics
650 _ 2 |2 MeSH
|a Phylogeny
650 _ 2 |2 MeSH
|a Sensitivity and Specificity
650 _ 2 |2 MeSH
|a Software
650 _ 7 |0 0
|2 NLM Chemicals
|a Oligonucleotide Probes
650 _ 7 |0 EC 5.99.1.-
|2 NLM Chemicals
|a DNA Gyrase
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a microarray
653 2 0 |2 Author
|a functional genes
653 2 0 |2 Author
|a microbial community
653 2 0 |2 Author
|a plant diversity
700 1 _ |0 P:(DE-HGF)0
|a Deng, Y.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Van Nostrand, J.D.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Tu, Q.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Xu, M.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Hemme, C.L.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Li, X.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Wu, L.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Gentry, T.J.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Yin, Y.
|b 9
700 1 _ |0 P:(DE-Juel1)VDB940
|a Liebich, J.
|b 10
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Hazen, T.C.
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Zhou, J.
|b 12
773 _ _ |0 PERI:(DE-600)2299378-2
|a 10.1038/ismej.2010.46
|g Vol. 4, p. 1167 - 1179
|p 1167 - 1179
|q 4<1167 - 1179
|t The @ISME journal
|v 4
|x 1751-7362
|y 2010
856 7 _ |u http://dx.doi.org/10.1038/ismej.2010.46
909 C O |o oai:juser.fz-juelich.de:9598
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK407
|a DE-HGF
|b Erde und Umwelt
|k P24
|l Terrestrische Umwelt
|v Terrestrische Umwelt
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0040
|2 StatID
|a Peer review unknown
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
920 1 _ |0 I:(DE-Juel1)VDB793
|d 31.10.2010
|g ICG
|k ICG-4
|l Agrosphäre
|x 1
970 _ _ |a VDB:(DE-Juel1)119530
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21