000000964 001__ 964
000000964 005__ 20200423202341.0
000000964 0247_ $$2pmid$$apmid:19563443
000000964 0247_ $$2DOI$$a10.1111/j.1469-8137.2009.02919.x
000000964 0247_ $$2WOS$$aWOS:000269541600023
000000964 037__ $$aPreJuSER-964
000000964 041__ $$aeng
000000964 082__ $$a580
000000964 084__ $$2WoS$$aPlant Sciences
000000964 1001_ $$0P:(DE-HGF)0$$aKaufmann, I.$$b0
000000964 245__ $$aFunctional repair of embolized vessels in maize roots after temporal drought stress, as demonstrated by magnetic  resonance imaging
000000964 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2009
000000964 300__ $$a245 - 256
000000964 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000000964 3367_ $$2DataCite$$aOutput Types/Journal article
000000964 3367_ $$00$$2EndNote$$aJournal Article
000000964 3367_ $$2BibTeX$$aARTICLE
000000964 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000000964 3367_ $$2DRIVER$$aarticle
000000964 440_0 $$04600$$aNew Phytologist$$v184$$x0028-646X
000000964 500__ $$aRecord converted from VDB: 12.11.2012
000000964 520__ $$aXylem sap under high tension is in a metastable state and tends to cavitate, frequently leading to an interruption of the continuous water columns. Mechanisms of cavitation repair are controversially discussed. Magnetic resonance (MR) imaging provides a noninvasive, high spatial and temporal resolution approach to monitor xylem cavitation, refilling, and functionality. Spin density maps of drought-stressed maize taproots were recorded to localize cavitation events and to visualize the refilling processes; c. 2 h after release of the nutrient solution from the homemade MR imaging cuvette that received the root, late metaxylem vessels started to cavitate randomly as identified by a loss of signal intensity. After c. 6 h plants were rewatered, leading to a repair of water columns in five out of eight roots. Sap ascent during refilling, monitored with multislice MR imaging sequences, varied between 0.5 mm min(-1) and 3.3 mm min(-1). Flow imaging of apparently refilled vessels was performed to test for functional repair. Occasionally, a collapse of xylem vessels under tension was observed; this collapse was reversible upon rewatering. Refilling was an all-or-none process only observed under low-light conditions. Absence of flow in some of the apparently refilled vessels indicates that functionality was not restored in these particular vessels, despite a recovery of the spin density signal.
000000964 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000000964 588__ $$aDataset connected to Web of Science, Pubmed
000000964 650_2 $$2MeSH$$aDroughts
000000964 650_2 $$2MeSH$$aMagnetic Resonance Spectroscopy
000000964 650_2 $$2MeSH$$aModels, Biological
000000964 650_2 $$2MeSH$$aPlant Exudates: metabolism
000000964 650_2 $$2MeSH$$aPlant Roots: cytology
000000964 650_2 $$2MeSH$$aPlant Roots: physiology
000000964 650_2 $$2MeSH$$aPlant Transpiration
000000964 650_2 $$2MeSH$$aSeedling: physiology
000000964 650_2 $$2MeSH$$aSpin Labels
000000964 650_2 $$2MeSH$$aStress, Physiological
000000964 650_2 $$2MeSH$$aTime Factors
000000964 650_2 $$2MeSH$$aXylem: physiology
000000964 650_2 $$2MeSH$$aZea mays: physiology
000000964 650_7 $$00$$2NLM Chemicals$$aPlant Exudates
000000964 650_7 $$00$$2NLM Chemicals$$aSpin Labels
000000964 650_7 $$2WoSType$$aJ
000000964 65320 $$2Author$$acavitation
000000964 65320 $$2Author$$acollapse of xylem vessels
000000964 65320 $$2Author$$adrought stress
000000964 65320 $$2Author$$aflow imaging
000000964 65320 $$2Author$$amagnetic resonance (MR) imaging (microscopy)
000000964 65320 $$2Author$$axylem refilling
000000964 65320 $$2Author$$aZea mays (maize)
000000964 7001_ $$0P:(DE-HGF)0$$aSchulze-Till, T.$$b1
000000964 7001_ $$0P:(DE-Juel1)129397$$aSchneider, H. U.$$b2$$uFZJ
000000964 7001_ $$0P:(DE-HGF)0$$aZimmermann, U.$$b3
000000964 7001_ $$0P:(DE-HGF)0$$aJakob, P.$$b4
000000964 7001_ $$0P:(DE-HGF)0$$aWegner, L. H.$$b5
000000964 773__ $$0PERI:(DE-600)1472194-6$$a10.1111/j.1469-8137.2009.02919.x$$gVol. 184, p. 245 - 256$$p245 - 256$$q184<245 - 256$$tThe @new phytologist$$v184$$x0028-646X$$y2009
000000964 8567_ $$uhttp://dx.doi.org/10.1111/j.1469-8137.2009.02919.x
000000964 8564_ $$uhttps://juser.fz-juelich.de/record/964/files/FZJ-964.pdf$$yRestricted$$zPublished final document.
000000964 909CO $$ooai:juser.fz-juelich.de:964$$pVDB
000000964 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000000964 9141_ $$y2009
000000964 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000000964 9201_ $$0I:(DE-Juel1)ICG-3-20090406$$d31.10.2010$$gICG$$kICG-3$$lPhytosphäre$$x1
000000964 970__ $$aVDB:(DE-Juel1)101760
000000964 980__ $$aVDB
000000964 980__ $$aConvertedRecord
000000964 980__ $$ajournal
000000964 980__ $$aI:(DE-Juel1)IBG-2-20101118
000000964 980__ $$aUNRESTRICTED
000000964 981__ $$aI:(DE-Juel1)IBG-2-20101118
000000964 981__ $$aI:(DE-Juel1)ICG-3-20090406