001     9700
005     20190625111341.0
024 7 _ |2 DOI
|a 10.5194/hess-14-545-2010
024 7 _ |2 WOS
|a WOS:000276178100012
024 7 _ |a altmetric:1365010
|2 altmetric
037 _ _ |a PreJuSER-9700
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Geosciences, Multidisciplinary
084 _ _ |2 WoS
|a Water Resources
100 1 _ |0 P:(DE-Juel1)VDB85768
|a Rings, J.
|b 0
|u FZJ
245 _ _ |a Coupled hydrogeophysical parameter estimation using a sequential Bayesian approach
260 _ _ |a Katlenburg-Lindau
|b EGU
|c 2010
300 _ _ |a 545 - 556
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 22262
|a Hydrology and Earth System Sciences
|v 14
|x 1027-5606
|y 3
500 _ _ |a We thank the reviewers for their constructive comments. J. Rings thanks the BAW Karlsruhe for the possibility to take measurements on the dike model and A. Scheuermann and A. Bieberstein at the IBF, University of Karlsruhe, for supporting the measurements. J. A. Huisman is supported by grant HU1312/21 of the Deutsche Forschungsgemeinschaft.
520 _ _ |a Coupled hydrogeophysical methods infer hydrological and petrophysical parameters directly from geophysical measurements. Widespread methods do not explicitly recognize uncertainty in parameter estimates. Therefore, we apply a sequential Bayesian framework that provides updates of state, parameters and their uncertainty whenever measurements become available. We have coupled a hydrological and an electrical resistivity tomography (ERT) forward code in a particle filtering framework. First, we analyze a synthetic data set of lysimeter infiltration monitored with ERT. In a second step, we apply the approach to field data measured during an infiltration event on a full-scale dike model. For the synthetic data, the water content distribution and the hydraulic conductivity are accurately estimated after a few time steps. For the field data, hydraulic parameters are successfully estimated from water content measurements made with spatial time domain reflectometry and ERT, and the development of their posterior distributions is shown.
536 _ _ |0 G:(DE-Juel1)FUEK407
|2 G:(DE-HGF)
|a Terrestrische Umwelt
|c P24
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-Juel1)129472
|a Huisman, J. A.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)129549
|a Vereecken, H.
|b 2
|u FZJ
773 _ _ |0 PERI:(DE-600)2100610-6
|a 10.5194/hess-14-545-2010
|g Vol. 14, p. 545 - 556
|p 545 - 556
|q 14<545 - 556
|t Hydrology and earth system sciences
|v 14
|x 1027-5606
|y 2010
856 7 _ |u http://dx.doi.org/10.5194/hess-14-545-2010
909 C O |o oai:juser.fz-juelich.de:9700
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK407
|a DE-HGF
|b Erde und Umwelt
|k P24
|l Terrestrische Umwelt
|v Terrestrische Umwelt
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.10.2010
|g ICG
|k ICG-4
|l Agrosphäre
|0 I:(DE-Juel1)VDB793
|x 1
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l Jülich-Aachen Research Alliance - Energy
|g JARA
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
970 _ _ |a VDB:(DE-Juel1)119646
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-82)080012_20140620
981 _ _ |a I:(DE-Juel1)IBG-3-20101118
981 _ _ |a I:(DE-Juel1)VDB1047


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21