000009706 001__ 9706
000009706 005__ 20180208212038.0
000009706 0247_ $$2DOI$$a10.1016/j.jhydrol.2009.10.023
000009706 0247_ $$2WOS$$aWOS:000274353000007
000009706 037__ $$aPreJuSER-9706
000009706 041__ $$aeng
000009706 082__ $$a690
000009706 084__ $$2WoS$$aEngineering, Civil
000009706 084__ $$2WoS$$aGeosciences, Multidisciplinary
000009706 084__ $$2WoS$$aWater Resources
000009706 1001_ $$0P:(DE-Juel1)129472$$aHuisman, J. A.$$b0$$uFZJ
000009706 245__ $$aHydraulic properties of a model dike from coupled Bayesian and multi-criteria hydrogeophysical inversion
000009706 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2010
000009706 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000009706 3367_ $$2DataCite$$aOutput Types/Journal article
000009706 3367_ $$00$$2EndNote$$aJournal Article
000009706 3367_ $$2BibTeX$$aARTICLE
000009706 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000009706 3367_ $$2DRIVER$$aarticle
000009706 440_0 $$03413$$aJournal of Hydrology$$v380$$x0022-1694$$y1
000009706 500__ $$aWe thank A. Scheuermann and A. Bieberstein at the IBF, University of Karlsruhe and the BAW Karlsruhe for the possibility to take measurements on the dike model. J.A. Vrugt is supported by a J. Robert Oppenheimer Fellowship from the Los Alamos National Laboratory postdoctoral program. J.A. Huisman and J. Sorg are supported by Grant HU1312/2-1 of the Deutsche Forschungsgemeinschaft.
000009706 520__ $$aCoupled hydrogeophysical inversion aims to improve the use of geophysical data for hydrological model Parameterization. Several numerical studies have illustrated the feasibility and advantages of a coupled approach. However, there is still a lack of studies that apply the coupled inversion approach to actual field data. In this paper, we test the feasibility of coupled hydrogeophysical inversion for determining the hydraulic properties of a model dike using measurements of electrical resistance tomography (ERT). Our analysis uses a two-dimensional (2D) finite element hydrological model (HYDRUS-2D) coupled to a 2.5D finite element electrical resistivity code (CRMOD), and includes explicit recognition of parameter uncertainty by using a Bayesian and multiple criteria framework with the DREAM and AMALGAM population based search algorithms. To benchmark our inversion results, soil hydraulic properties determined from ERT data are compared with those separately obtained from detailed in situ soil water content measurements using Time Domain Reflectometry (TDR). Our most important results are as follows. (1) TDR and ERT data theoretically contain sufficient information to resolve most of the soil hydraulic properties, (2) the DREAM-derived posterior distributions of the hydraulic parameters are quite similar when estimated separately using TDR and ERT measurements for model calibration, (3) among all parameters, the saturated hydraulic conductivity of the dike material is best constrained, (4) the saturation exponent of the petrophysical model is well defined, and matches independently measured values, (5) measured ERT data sufficiently constrain model predictions of water table dynamics within the model dike. This finding demonstrates an innate ability of ERT data to provide accurate hydrogeophysical parameterizations for flooding events, which is of particular relevance to dike management, and (6) the AMALGAM-derived Pareto front demonstrates trade-off in the fitting of ERT and TDR measurements. Altogether, we conclude that coupled hydrogeophysical inversion using a Bayesian approach is especially powerful for hydrological model calibration. The posterior probability density functions of the model parameters and model output predictions contain important information to determine if geophysical measurements provide constraints on hydrological predictions. (C) 2009 Elsevier B.V. All rights reserved.
000009706 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000009706 588__ $$aDataset connected to Web of Science
000009706 65320 $$2Author$$aHydrogeophysics
000009706 65320 $$2Author$$aInversion
000009706 65320 $$2Author$$aTDR
000009706 65320 $$2Author$$aERT
000009706 650_7 $$2WoSType$$aJ
000009706 7001_ $$0P:(DE-Juel1)VDB85768$$aRings, J.$$b1$$uFZJ
000009706 7001_ $$0P:(DE-HGF)0$$aVrugt, J.A.$$b2
000009706 7001_ $$0P:(DE-Juel1)VDB85769$$aSorg, J.$$b3$$uFZJ
000009706 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b4$$uFZJ
000009706 773__ $$0PERI:(DE-600)1473173-3$$a10.1016/j.jhydrol.2009.10.023$$gVol. 380$$q380$$tJournal of hydrology$$v380$$x0022-1694$$y2010
000009706 8567_ $$uhttp://dx.doi.org/10.1016/j.jhydrol.2009.10.023
000009706 909CO $$ooai:juser.fz-juelich.de:9706$$pVDB
000009706 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000009706 9141_ $$y2010
000009706 9131_ $$0G:(DE-Juel1)FUEK407$$aDE-HGF$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000009706 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x1
000009706 9201_ $$0I:(DE-82)080011_20140620$$gJARA$$kJARA-ENERGY$$lJülich-Aachen Research Alliance - Energy$$x2
000009706 970__ $$aVDB:(DE-Juel1)119651
000009706 980__ $$aVDB
000009706 980__ $$aConvertedRecord
000009706 980__ $$ajournal
000009706 980__ $$aI:(DE-Juel1)IBG-3-20101118
000009706 980__ $$aI:(DE-82)080011_20140620
000009706 980__ $$aUNRESTRICTED
000009706 981__ $$aI:(DE-Juel1)IBG-3-20101118
000009706 981__ $$aI:(DE-Juel1)VDB1047