000009719 001__ 9719
000009719 005__ 20210129210505.0
000009719 0247_ $$2pmid$$apmid:20445071
000009719 0247_ $$2DOI$$a10.1523/JNEUROSCI.6092-09.2010
000009719 0247_ $$2WOS$$aWOS:000277358300031
000009719 0247_ $$2Handle$$a2128/20585
000009719 0247_ $$2altmetric$$aaltmetric:2717913
000009719 037__ $$aPreJuSER-9719
000009719 041__ $$aeng
000009719 082__ $$a590
000009719 084__ $$2WoS$$aNeurosciences
000009719 1001_ $$0P:(DE-HGF)0$$aRueger, M.A.$$b0
000009719 245__ $$aNoninvasive imaging of endogenus neural stem cell mobilization in vivo using positron emission tomography
000009719 260__ $$aWashington, DC$$bSoc.$$c2010
000009719 300__ $$a6454 - 6460
000009719 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000009719 3367_ $$2DataCite$$aOutput Types/Journal article
000009719 3367_ $$00$$2EndNote$$aJournal Article
000009719 3367_ $$2BibTeX$$aARTICLE
000009719 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000009719 3367_ $$2DRIVER$$aarticle
000009719 440_0 $$03603$$aJournal of Neuroscience$$v30$$x0270-6474$$y18
000009719 500__ $$aThis work was supported by the Koeln Fortune Program/Faculty of Medicine, University of Cologne, Germany (144/2007).
000009719 520__ $$aNeural stem cells reside in two major niches in the adult brain [i.e., the subventricular zone (SVZ) and the dentate gyrus of the hippocampus]. Insults to the brain such as cerebral ischemia result in a physiological mobilization of endogenous neural stem cells. Since recent studies showed that pharmacological stimulation can be used to expand the endogenous neural stem cell niche, hope has been raised to enhance the brain's own regenerative capacity. For the evaluation of such novel therapeutic approaches, longitudinal and intraindividual monitoring of the endogenous neural stem cell niche would be required. However, to date no conclusive imaging technique has been established. We used positron emission tomography (PET) and the radiotracer 3'-deoxy-3'-[(18)F]fluoro-l-thymidine ([(18)F]FLT) that enables imaging and measuring of proliferation to noninvasively detect endogenous neural stem cells in the normal and diseased adult rat brain in vivo. This method indeed visualized neural stem cell niches in the living rat brain, identified as increased [(18)F]FLT-binding in the SVZ and the hippocampus. Focal cerebral ischemia and subsequent damage of the blood-brain barrier did not interfere with the capability of [(18)F]FLT-PET to visualize neural stem cell mobilization. Moreover, [(18)F]FLT-PET allowed for an in vivo quantification of increased neural stem cell mobilization caused by pharmacological stimulation or by focal cerebral ischemia. The data suggest that noninvasive longitudinal monitoring and quantification of endogenous neural stem cell activation in the brain is feasible and that [(18)F]FLT-PET could be used to monitor the effects of drugs aimed at expanding the neural stem cell niche.
000009719 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems (FUEK409)$$cFUEK409$$x0
000009719 536__ $$0G:(DE-HGF)POF2-89572$$a89572 - (Dys-)function and Plasticity (POF2-89572)$$cPOF2-89572$$fPOF II T$$x1
000009719 588__ $$aDataset connected to Web of Science, Pubmed
000009719 650_2 $$2MeSH$$aAnimals
000009719 650_2 $$2MeSH$$aBrain: drug effects
000009719 650_2 $$2MeSH$$aBrain: embryology
000009719 650_2 $$2MeSH$$aBrain: metabolism
000009719 650_2 $$2MeSH$$aBrain: physiology
000009719 650_2 $$2MeSH$$aBrain: radionuclide imaging
000009719 650_2 $$2MeSH$$aBrain Ischemia: metabolism
000009719 650_2 $$2MeSH$$aBrain Ischemia: physiopathology
000009719 650_2 $$2MeSH$$aCell Movement: drug effects
000009719 650_2 $$2MeSH$$aCell Movement: physiology
000009719 650_2 $$2MeSH$$aCell Proliferation: drug effects
000009719 650_2 $$2MeSH$$aCells, Cultured
000009719 650_2 $$2MeSH$$aDideoxynucleosides: metabolism
000009719 650_2 $$2MeSH$$aFibroblast Growth Factor 2: pharmacology
000009719 650_2 $$2MeSH$$aInsulin: pharmacology
000009719 650_2 $$2MeSH$$aIntracellular Signaling Peptides and Proteins
000009719 650_2 $$2MeSH$$aLateral Ventricles: drug effects
000009719 650_2 $$2MeSH$$aLateral Ventricles: physiology
000009719 650_2 $$2MeSH$$aMembrane Proteins: pharmacology
000009719 650_2 $$2MeSH$$aNeurons: metabolism
000009719 650_2 $$2MeSH$$aNeurons: physiology
000009719 650_2 $$2MeSH$$aPositron-Emission Tomography: methods
000009719 650_2 $$2MeSH$$aRats
000009719 650_2 $$2MeSH$$aStem Cells: metabolism
000009719 650_2 $$2MeSH$$aStem Cells: physiology
000009719 650_7 $$00$$2NLM Chemicals$$aDideoxynucleosides
000009719 650_7 $$00$$2NLM Chemicals$$aInsulin
000009719 650_7 $$00$$2NLM Chemicals$$aIntracellular Signaling Peptides and Proteins
000009719 650_7 $$00$$2NLM Chemicals$$aMembrane Proteins
000009719 650_7 $$00$$2NLM Chemicals$$adelta protein
000009719 650_7 $$0103107-01-3$$2NLM Chemicals$$aFibroblast Growth Factor 2
000009719 650_7 $$025526-93-6$$2NLM Chemicals$$aalovudine
000009719 650_7 $$2WoSType$$aJ
000009719 7001_ $$0P:(DE-HGF)0$$aBackes, H.$$b1
000009719 7001_ $$0P:(DE-HGF)0$$aWalberer, M.$$b2
000009719 7001_ $$0P:(DE-HGF)0$$aNleumaier, B.$$b3
000009719 7001_ $$0P:(DE-HGF)0$$aUllrich, R.$$b4
000009719 7001_ $$0P:(DE-HGF)0$$aSimar, M.L.$$b5
000009719 7001_ $$0P:(DE-HGF)0$$aEMig, B.$$b6
000009719 7001_ $$0P:(DE-Juel1)131720$$aFink, G. R.$$b7$$uFZJ
000009719 7001_ $$0P:(DE-HGF)0$$aHoehn, M.$$b8
000009719 7001_ $$0P:(DE-Juel1)VDB89964$$aGraf, R.$$b9$$uFZJ
000009719 7001_ $$0P:(DE-HGF)0$$aSchroeter, M.$$b10
000009719 773__ $$0PERI:(DE-600)1475274-8$$a10.1523/JNEUROSCI.6092-09.2010$$gVol. 30, p. 6454 - 6460$$p6454 - 6460$$q30<6454 - 6460$$tThe @journal of neuroscience$$v30$$x0270-6474$$y2010
000009719 8567_ $$uhttp://dx.doi.org/10.1523/JNEUROSCI.6092-09.2010
000009719 8564_ $$uhttps://juser.fz-juelich.de/record/9719/files/6454.full.pdf$$yOpenAccess
000009719 8564_ $$uhttps://juser.fz-juelich.de/record/9719/files/6454.full.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000009719 909CO $$ooai:juser.fz-juelich.de:9719$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000009719 9141_ $$y2010
000009719 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000009719 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000009719 9132_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000009719 9131_ $$0G:(DE-HGF)POF2-89572$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$v(Dys-)function and Plasticity$$x1
000009719 9201_ $$0I:(DE-Juel1)INM-3-20090406$$gINM$$kINM-3$$lKognitive Neurowissenschaften$$x0
000009719 970__ $$aVDB:(DE-Juel1)119669
000009719 980__ $$aVDB
000009719 980__ $$aConvertedRecord
000009719 980__ $$ajournal
000009719 980__ $$aI:(DE-Juel1)INM-3-20090406
000009719 980__ $$aUNRESTRICTED
000009719 9801_ $$aFullTexts