000972086 001__ 972086
000972086 005__ 20241023211803.0
000972086 0247_ $$2doi$$a10.1051/epjn/2022046
000972086 0247_ $$2Handle$$a2128/33834
000972086 0247_ $$2WOS$$aWOS:000890588900002
000972086 037__ $$aFZJ-2023-01055
000972086 082__ $$a600
000972086 1001_ $$0P:(DE-HGF)0$$aDomínguez-Bugarín, Araceli$$b0$$eCorresponding author
000972086 245__ $$aPARUPM: A simulation code for passive auto-catalytic recombiners
000972086 260__ $$aLes Ulis$$bEDP Sciences$$c2022
000972086 3367_ $$2DRIVER$$aarticle
000972086 3367_ $$2DataCite$$aOutput Types/Journal article
000972086 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1729661080_26265
000972086 3367_ $$2BibTeX$$aARTICLE
000972086 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000972086 3367_ $$00$$2EndNote$$aJournal Article
000972086 520__ $$aIn the event of a severe accident with core damage in a water-cooled nuclear reactor, combustible gases (H2 and possibly CO) get released into the containment atmosphere. An uncontrolled combustion of a large cloud with a high concentration of combustible gases could lead to a threat to the containment integrity if concentrations within their flammability limits are reached. To mitigate this containment failure risk, many countries have proceeded to install passive auto-catalytic recombiners (PARs) inside containment buildings. These devices represent a passive strategy for controlling combustible gases, since they can convert H2 and CO into H2O and CO2, respectively. In this work, the code PARUPM developed by the Department of Energy Engineering at the UPM is described. This work is part of the AMHYCO project (Euratom 2014–2018, GA No. 945057) aiming at improving experimental knowledge and simulation capabilities for the H2/CO combustion risk management in severe accidents (SAs). Thus, enhancing the available knowledge related to PAR operational performance is one key point of the project. The PARUPM code includes a physicochemical model developed for the simulation of surface chemistry, and heat and species mass transfer between the catalytic sheets and gaseous mixtures of hydrogen, carbon monoxide, air, steam and carbon dioxide. This model involves a simplified Deutschmann reaction scheme for the surface combustion of methane, and the Elenbaas analysis for buoyancy-induced heat transfer between parallel plates. Mass transfer is considered using the heat and mass transfer analogy. By simulating the recombination reactions of H2 and CO inside the catalytic section of the PAR, PARUPM allows studying the effect of CO on transients related to accidents that advance towards the ex-vessel phase. A thorough analysis of the code capabilities by comparing the numerical results with experimental data obtained from the REKO-3 facility has been executed. This analysis allows for establishing the ranges in which the code is validated and to further expands the capabilities of the simulation code which will lead to its coupling with thermal-hydraulic codes in future steps of the project.
000972086 536__ $$0G:(DE-HGF)POF4-1422$$a1422 - Beyond Design Basis Accidents and Emergency Management (POF4-142)$$cPOF4-142$$fPOF IV$$x0
000972086 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000972086 7001_ $$00000-0001-7680-4855$$aJiménez, Miguel-Ángel$$b1
000972086 7001_ $$0P:(DE-Juel1)130400$$aReinecke, Ernst-Arndt$$b2
000972086 7001_ $$00000-0003-2710-3029$$aJiménez, Gonzalo$$b3
000972086 773__ $$0PERI:(DE-600)2856743-2$$a10.1051/epjn/2022046$$gVol. 8, p. 32 -$$p32 -$$tEPJ Nuclear Sciences & Technologies$$v8$$x2491-9292$$y2022
000972086 8564_ $$uhttps://juser.fz-juelich.de/record/972086/files/epjn220064-1.pdf$$yOpenAccess
000972086 909CO $$ooai:juser.fz-juelich.de:972086$$popen_access$$popenaire$$pdnbdelivery$$pdriver$$pVDB
000972086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130400$$aForschungszentrum Jülich$$b2$$kFZJ
000972086 9131_ $$0G:(DE-HGF)POF4-142$$1G:(DE-HGF)POF4-140$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1422$$aDE-HGF$$bForschungsbereich Energie$$lNukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)$$vSicherheit von Kernreaktoren$$x0
000972086 9141_ $$y2022
000972086 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-16
000972086 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000972086 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-06-06T18:39:13Z
000972086 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2022-11-16
000972086 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-06-06T18:39:13Z
000972086 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000972086 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-06-06T18:39:13Z
000972086 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-16
000972086 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-16
000972086 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-16
000972086 920__ $$lyes
000972086 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000972086 980__ $$ajournal
000972086 980__ $$aVDB
000972086 980__ $$aI:(DE-Juel1)IEK-14-20191129
000972086 980__ $$aUNRESTRICTED
000972086 9801_ $$aFullTexts
000972086 981__ $$aI:(DE-Juel1)IET-4-20191129