001     972096
005     20240711085702.0
024 7 _ |a 10.1002/aenm.202202712
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a 2128/34040
|2 Handle
024 7 _ |a WOS:000903048700001
|2 WOS
037 _ _ |a FZJ-2023-01064
082 _ _ |a 050
100 1 _ |a Ortmann, Till
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Kinetics and Pore Formation of the Sodium Metal Anode on NASICON‐Type Na 3.4 Zr 2 Si 2.4 P 0.6 O 12 for Sodium Solid‐State Batteries
260 _ _ |a Weinheim
|c 2023
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1677570165_4159
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In recent years, many efforts have been made to introduce reversible alkali metal anodes using solid electrolytes in order to increase the energy density of next-generation batteries. In this respect, Na3.4Zr2Si2.4P0.6O12 is a promising solid electrolyte for solid-state sodium batteries, due to its high ionic conduc-tivity and apparent stability versus sodium metal. The formation of a kinetically stable interphase in contact with sodium metal is revealed by time-resolved impedance analysis, in situ X-ray photoelectron spectroscopy, and transmis-sion electron microscopy. Based on pressure- and temperature-dependent impedance analyses, it is concluded that the Na|Na3.4Zr2Si2.4P0.6O12 interface kinetics is dominated by current constriction rather than by charge transfer. Cross-sections of the interface after anodic dissolution at various mechanical loads visualize the formed pore structure due to the accumulation of vacancies near the interface. The temporal evolution of the pore morphology after anodic dissolution is monitored by time-resolved impedance analysis. Equilibration of the interface is observed even under extremely low external mechanical load, which is attributed to fast vacancy diffusion in sodium metal, while equilibra-tion is faster and mainly caused by creep at increased external load. The pre-sented information provides useful insights into a more profound evaluation of the sodium metal anode in solid-state batteries.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Burkhardt, Simon
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Eckhardt, Janis Kevin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Fuchs, Till
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ding, Ziming
|b 4
700 1 _ |a Sann, Joachim
|b 5
700 1 _ |a Rohnke, Marcus
|b 6
700 1 _ |a Ma, Qianli
|0 P:(DE-Juel1)129628
|b 7
|u fzj
700 1 _ |a Tietz, Frank
|0 P:(DE-Juel1)129667
|b 8
|u fzj
700 1 _ |a Fattakhova-Rohlfing, Dina
|0 P:(DE-Juel1)171780
|b 9
|u fzj
700 1 _ |a Kübel, Christian
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 11
|u fzj
700 1 _ |a Heiliger, Christian
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Janek, Jürgen
|0 0000-0002-9221-4756
|b 13
|e Corresponding author
773 _ _ |a 10.1002/aenm.202202712
|g p. 2202712 -
|0 PERI:(DE-600)2594556-7
|n 5
|p 2202712
|t Advanced energy materials
|v 13
|y 2023
|x 1614-6832
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/972096/files/Na-NZSPO%20Interface_Manuscript.docx
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/972096/files/Advanced%20Energy%20Materials%20-%202022%20-%20Ortmann%20-%20Kinetics%20and%20Pore%20Formation%20of%20the%20Sodium%20Metal%20Anode%20on%20NASICON%E2%80%90Type%20Na3.pdf
909 C O |o oai:juser.fz-juelich.de:972096
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129628
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129667
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)171780
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-12
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-26
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV ENERGY MATER : 2022
|d 2023-10-26
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21