001     972102
005     20230929112510.0
024 7 _ |a 10.3389/femat.2023.1061269
|2 doi
024 7 _ |a 2128/33847
|2 Handle
037 _ _ |a FZJ-2023-01070
082 _ _ |a 540
100 1 _ |a Bengel, Christopher
|0 P:(DE-Juel1)188159
|b 0
|e Corresponding author
245 _ _ |a Tailor-made synaptic dynamics based on memristive devices
260 _ _ |a Lausanne
|c 2023
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1675236225_7868
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The proliferation of machine learning algorithms in everyday applications such as image recognition or language translation has increased the pressure to adapt underlying computing architectures towards these algorithms. Application specific integrated circuits (ASICs) such as the Tensor Processing Units by Google, Hanguang by Alibaba or Inferentia by Amazon Web Services were designed specifically for machine learning algorithms and have been able to outperform CPU based solutions by great margins during training and inference. As newer generations of chips allow handling of and computation on more and more data, the size of neural networks has dramatically increased, while the challenges they are trying to solve have become more complex. Neuromorphic computing tries to take inspiration from biological information processing systems, aiming to further improve the efficiency with which these networks can be trained or the inference can be performed. Enhancing neuromorphic computing architectures with memristive devices as non-volatile storage elements could potentially allow for even higher energy efficiencies. Their ability to mimic synaptic plasticity dynamics brings neuromorphic architectures closer to the biological role models. So far, memristive devices are mainly investigated for the emulation of the weights of neural networks during training and inference as their non-volatility would enable both processes in the same location without data transfer. In this paper, we explore realisations of different synapses build from memristive ReRAM devices, based on the Valence Change Mechanism. These synapses are the 1R synapse, the NR synapse and the 1T1R synapse. For the 1R synapse, we propose three dynamical regimes and explore their performance through different synapse criteria. For the NR synapse, we discuss how the same dynamical regimes can be addressed in a more reliable way. We also show experimental results measured on ZrOx devices to support our simulation based claims. For the 1T1R synapse, we explore the trade offs between the connection direction of the ReRAM device and the transistor. For all three synapse concepts we discuss the impact of device-to-device and cycle-to-cycle variability. Additionally, the impact of the stimulation mode on the observed behavior is discussed.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 0
536 _ _ |a BMBF-16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0399)
|0 G:(DE-82)BMBF-16ME0399
|c BMBF-16ME0399
|x 1
536 _ _ |a BMBF-16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K)
|0 G:(DE-82)BMBF-16ME0398K
|c BMBF-16ME0398K
|x 2
536 _ _ |a ACA - Advanced Computing Architectures (SO-092)
|0 G:(DE-HGF)SO-092
|c SO-092
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zhang, Kaihua
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mohr, Johannes
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ziegler, Tobias
|0 P:(DE-Juel1)177689
|b 3
700 1 _ |a Wiefels, Stefan
|0 P:(DE-Juel1)187229
|b 4
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 5
700 1 _ |a Wouters, Dirk
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 7
773 _ _ |a 10.3389/femat.2023.1061269
|g Vol. 3, p. 1061269
|0 PERI:(DE-600)3106175-8
|p 1061269
|t Frontiers in electronic materials
|v 3
|y 2023
|x 2673-9895
856 4 _ |u https://juser.fz-juelich.de/record/972102/files/femat-03-1061269.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:972102
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188159
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)177689
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)187229
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)158062
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-11-10T09:54:54Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-11-10T09:54:54Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-11-10T09:54:54Z
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21