000972115 001__ 972115
000972115 005__ 20231027114354.0
000972115 0247_ $$2doi$$a10.1016/j.firesaf.2023.103744
000972115 0247_ $$2ISSN$$a0378-7761
000972115 0247_ $$2ISSN$$a0379-7112
000972115 0247_ $$2ISSN$$a1873-7226
000972115 0247_ $$2Handle$$a2128/33911
000972115 0247_ $$2WOS$$aWOS:000927547500001
000972115 037__ $$aFZJ-2023-01077
000972115 082__ $$a690
000972115 1001_ $$0P:(DE-HGF)0$$aLauer, Patrick$$b0
000972115 245__ $$aInverse modelling of pyrolization kinetics with ensemble learning methods
000972115 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2023
000972115 3367_ $$2DRIVER$$aarticle
000972115 3367_ $$2DataCite$$aOutput Types/Journal article
000972115 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1676540234_4488
000972115 3367_ $$2BibTeX$$aARTICLE
000972115 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000972115 3367_ $$00$$2EndNote$$aJournal Article
000972115 520__ $$aTo simulate fire spread, especially the pyrolysis process – the thermal decomposition of a solid material – must be predicted. Yet, needed material dependent reaction kinetic parameters cannot be directly measured. Common methods infer them from small scale tests with inverse modelling approaches, which are computationally costly. Here, a novel machine learning based approach utilising extremely randomized trees (ERT) is presented and evaluated. It aims to derive these parameters almost instantly due to an inverse pre-trained surrogate model. The approach consists of an ERT classifier, a non-linear least squares optimiser and an ERT regressor. A thorough hyperparameter study was conducted. The model is evaluated with a synthetic thermogravimetric analysis (TGA) dataset. Calculated from an Arrhenius model, it contains data for more than  synthetic materials consisting of up to three components. The method is also applied on real experimental data, here polymethyl methacrylate (PMMA), gained from the Measurement and Computation of Fire Phenomena (MacFP) working group. Evaluation of the model demonstrated that it can instantly predict reaction kinetic parameters from TGA experiments for synthetic and real materials. Systematic analysis showed an overall  score of 0.77 for the complete model predictions. The code and datasets are published as open access.
000972115 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000972115 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000972115 7001_ $$0P:(DE-Juel1)132044$$aArnold, Lukas$$b1
000972115 7001_ $$00000-0002-5404-0855$$aBrännström, Fabian$$b2$$eCorresponding author
000972115 773__ $$0PERI:(DE-600)1483569-1$$a10.1016/j.firesaf.2023.103744$$gp. 103744 -$$p103744 -$$tFire safety journal$$v136$$x0378-7761$$y2023
000972115 8564_ $$uhttps://juser.fz-juelich.de/record/972115/files/1-s2.0-S0379711223000127-main.pdf$$yOpenAccess
000972115 909CO $$ooai:juser.fz-juelich.de:972115$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000972115 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132044$$aForschungszentrum Jülich$$b1$$kFZJ
000972115 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000972115 9141_ $$y2023
000972115 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000972115 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000972115 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000972115 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000972115 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000972115 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-21
000972115 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFIRE SAFETY J : 2022$$d2023-10-21
000972115 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000972115 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
000972115 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
000972115 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
000972115 920__ $$lyes
000972115 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
000972115 980__ $$ajournal
000972115 980__ $$aVDB
000972115 980__ $$aUNRESTRICTED
000972115 980__ $$aI:(DE-Juel1)IAS-7-20180321
000972115 9801_ $$aFullTexts