001     972115
005     20231027114354.0
024 7 _ |a 10.1016/j.firesaf.2023.103744
|2 doi
024 7 _ |a 0378-7761
|2 ISSN
024 7 _ |a 0379-7112
|2 ISSN
024 7 _ |a 1873-7226
|2 ISSN
024 7 _ |a 2128/33911
|2 Handle
024 7 _ |a WOS:000927547500001
|2 WOS
037 _ _ |a FZJ-2023-01077
082 _ _ |a 690
100 1 _ |a Lauer, Patrick
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Inverse modelling of pyrolization kinetics with ensemble learning methods
260 _ _ |a New York, NY [u.a.]
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1676540234_4488
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To simulate fire spread, especially the pyrolysis process – the thermal decomposition of a solid material – must be predicted. Yet, needed material dependent reaction kinetic parameters cannot be directly measured. Common methods infer them from small scale tests with inverse modelling approaches, which are computationally costly. Here, a novel machine learning based approach utilising extremely randomized trees (ERT) is presented and evaluated. It aims to derive these parameters almost instantly due to an inverse pre-trained surrogate model. The approach consists of an ERT classifier, a non-linear least squares optimiser and an ERT regressor. A thorough hyperparameter study was conducted. The model is evaluated with a synthetic thermogravimetric analysis (TGA) dataset. Calculated from an Arrhenius model, it contains data for more than synthetic materials consisting of up to three components. The method is also applied on real experimental data, here polymethyl methacrylate (PMMA), gained from the Measurement and Computation of Fire Phenomena (MacFP) working group. Evaluation of the model demonstrated that it can instantly predict reaction kinetic parameters from TGA experiments for synthetic and real materials. Systematic analysis showed an overall score of 0.77 for the complete model predictions. The code and datasets are published as open access.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Arnold, Lukas
|0 P:(DE-Juel1)132044
|b 1
700 1 _ |a Brännström, Fabian
|0 0000-0002-5404-0855
|b 2
|e Corresponding author
773 _ _ |a 10.1016/j.firesaf.2023.103744
|g p. 103744 -
|0 PERI:(DE-600)1483569-1
|p 103744 -
|t Fire safety journal
|v 136
|y 2023
|x 0378-7761
856 4 _ |u https://juser.fz-juelich.de/record/972115/files/1-s2.0-S0379711223000127-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:972115
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132044
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FIRE SAFETY J : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21