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A B S T R A C T

To simulate fire spread, especially the pyrolysis process – the thermal decomposition of a solid material – must
be predicted. Yet, needed material dependent reaction kinetic parameters cannot be directly measured. Com-
mon methods infer them from small scale tests with inverse modelling approaches, which are computationally
costly. Here, a novel machine learning based approach utilising extremely randomized trees (ERT) is presented
and evaluated. It aims to derive these parameters almost instantly due to an inverse pre-trained surrogate
model. The approach consists of an ERT classifier, a non-linear least squares optimiser and an ERT regressor.
A thorough hyperparameter study was conducted. The model is evaluated with a synthetic thermogravimetric
analysis (TGA) dataset. Calculated from an Arrhenius model, it contains data for more than 18 ⋅ 106 synthetic
materials consisting of up to three components. The method is also applied on real experimental data, here
polymethyl methacrylate (PMMA), gained from the Measurement and Computation of Fire Phenomena (MacFP)
working group. Evaluation of the model demonstrated that it can instantly predict reaction kinetic parameters
from TGA experiments for synthetic and real materials. Systematic analysis showed an overall 𝑅2 score of 0.77
for the complete model predictions. The code and datasets are published as open access.
1. Introduction

Advanced fire modelling is based on computational fluid dynamics
(CFD) and needs to consider fire spread to predict the progression
of a fire. In contrast to design fires, fire spread modelling can be
used to estimate the consequences of a fire and the effectiveness of
counter measures on the fire performance of buildings [1,2], critical
infrastructures [3] or vehicles [4,5]. In recent years, the prediction
of wildfires emerged as another area where fire spread modelling is
utilised [6].

To model the fire spread in all of these areas, the burning behaviour
of materials has to be described. Burning of solid material can be
separated into two mechanisms. One is the actual combustion in the
gas phase and the other one is pyrolysis, i.e. the decomposition and
transition from the condensed phase into the gas phase. To describe the
condensed phase decomposition, the geometry, the heat transfer to the
solid material, the heat conduction inside the material and the decom-
position kinetics need to be characterised [7,8]. Adequate models exist
to describe these processes [9–12]. Though, the material dependent
input parameters for these models can rarely be directly measured. A
common approach is to conduct small and bench scale experiments
like thermogravimetrical analysis (TGA) and cone calorimeter tests,
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(F. Brännström).

which both capture a temperature or time dependent mass loss rates
(MLR). Then, the experimental results are used to adjust the involved
model parameters with the aim to match the model and experiment
data. This inverse modelling approach is mostly based on optimisation
algorithms. This inverse modelling approach can be conducted with
elaborated frameworks such as PROPTI, that was designed especially
with pyrolysis modelling in focus [13,14]. Beside this approach, there
is a plethora of other approaches [8,15–17].

Even though no scientific consensus exists on what is the best
approach, the International Confederation for Thermal Analysis and
Calorimetry (ICTAC) raised the concern that different methods of es-
timating kinetic parameters could be implicitly seen as in competition
with each other. They rather suggest that different methods should
be used complementary to each other to verify the estimated param-
eters [18]. While results from inverse modelling with optimisation
algorithms can generally be considered to gain better results than other
methods [16], computational costs for these approaches are high, span-
ning from hours to days on contemporary high performance computing
clusters [19].
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To reduce the needed resources for the optimisation, this article
proposes a machine learning approach in a supervised learning sce-
nario. While application of machine learning methods in fire safety
science and engineering in general had a substantial rise in the past
years [20], they were rarely evaluated in the context of pyrolysis
modelling for fire simulation. Recently, researchers started to evalu-
ate machine learning methods for pyrolysis modelling in production
of biochemical fuels [21–25]. Due to the emphasis on biochemical
process optimisation in this application, the pyrolysis process happens
in a controlled environment and can be modelled differently than in
prediction of flame spread. Yet, flame spread during a fire happens
in an uncontrolled environment, an aspect that needs to be taken into
account. Hence, results cannot directly be adopted but give additional
understanding for fire spread modelling applications or methodological
insights.

In the proposed approach, an extremely randomized trees algo-
rithm [26] is used to build a generalised inverse surrogate model to
determine reaction kinetic parameters. These parameters are then used
to solve the Arrhenius equation to compute the reaction rates. Syn-
thetically generated TGA data is used for model training. Once trained
and tested, this inverse surrogate model provides instantaneously the
parameters needed to model pyrolysis. In the best case, the approach
will lead to satisfactory parameter set, i.e. comparable to or better
than those based on classical optimisation approaches. If not, it can
be used as an accelerating preprocessing step for costlier, yet more
precise, methods. In the following sections, it is shown how the training
database is generated, how the model is assembled and how it is
trained. Then, it is applied to a test dataset for validation and on real
case experimental data. In the end, results are discussed.

2. Model

2.1. Forward model

The forward model is based on a TGA experiment. In this experi-
ment, a specimen of only a few milligrams resting on a scale is heated
in a furnace to a specified temperature. In fire science, the temperature
of the experiment usually is determined by a constant heating rate
𝛽. The mass loss and its derivative, the mass loss rate, are captured
with reference to temperature and time [7]. Thermal properties of the
material itself are neglected, because usually the sample size is so small,
that it is assumed to be in thermal equilibrium with the apparatus [27].

Reaction kinetics of pyrolysis of a material’s component 𝑖 under-
oing a single reaction can be described with the Arrhenius approach
isplayed in Eq. (1). Here, 𝑟𝑖(𝑇𝑠) is the resulting reaction rate from
he pre-exponential factor 𝐴𝑖, the activation energy 𝐸𝑖, the solid’s
emperature 𝑇𝑠, the components mass fraction 𝑌s,𝑖 and the reaction
rder 𝑛s,𝑖. The index s refers to a solid material. [9]

𝑖(𝑇𝑠) = 𝐴𝑖𝑌
𝑛s,𝑖
s,𝑖 ⋅ exp(−

𝐸𝑖
𝑅𝑇𝑠

) (1)

To model multiple reactions for a total number of components 𝑛 and
he interaction between the involved material components, individual
nstances of Eq. (1) can be summed up according to Eq. (2). Here,
eaction rates 𝑟𝑖 for all 𝑛 components 𝑖 are summed up to describe the
ass change per time step, the mass loss rate. [9]

𝑑 𝑚
𝑚0

𝑑𝑡
=

𝑛
∑

𝑖=1

𝑑𝑌𝑠,𝑖
𝑑𝑡

= −
𝑛
∑

𝑖=1
𝑟𝑖 = −𝑟(𝑇 ) (2)

2.2. Dataset generation

The forward model presented in the previous section is used to
generate TGA experiment datasets synthetically. These sets are used to
train the inverse surrogate model. Therefore, the pre-exponential factor
𝐴 , the activation energy 𝐸 and the initial material fraction 𝑌 are
2

𝑖 𝑖 s,𝑖,0 t
randomly sampled. From these values the resulting reaction rate 𝑟𝑖(𝑇 )
can be calculated.

For simplification, only materials with up to three components
are investigated in this contribution. The number of components a
material consists of is denoted as 𝑛. Even if there were more reactions
observed in a TGA experiment, most of the time, multi step-kinetics can
be adequately described with two or three individual reactions [17].
Therefore, a maximum of three reactions was chosen. All components
undergo an individual first order reaction. The reactions are considered
as independent of each other and take place in parallel. The only
material fractions that will be examined are the initial solid fractions,
so 𝑌s,𝑖,0 will be written as 𝑌𝑖. All three reactions produce gaseous species
or inert solid products. This does not need to be specified further, since
only the reaction rate is investigated and none of the products will have
any influence on it, when taken account for in the normalisation of
the data. In this case, non-isothermal conditions are applied and the
temperature in Eq. (1) is dependent on a constant heating rate 𝛽. All
cases are investigated with four different heating rates. Using more
than one heating rate helps to compensate for unwanted effects and
errors in the experimental measurement. Since the modelled kinetic
parameters generally are not temperature dependent and the forward
model assumes a thermally thin sample, it would not have a signif-
icant effect on fitting when using synthetic data. For real data, it is
recommended to find a fit for several different heating rates, as a small
error in temperature measurement can lead to a significant error in the
reaction kinetic parameters. So it is desirable to find kinetic parameters
that fit experiments conducted at several heating rates, which combines
occurring thermal effects. These effects can result for example from
heat transfer in and to the sample, thermal inertia of the apparatus or
from physical or chemical changes in the sample [28–30].

In general, values for the pre-exponential factor 𝐴𝑖 and the ac-
ivation energy 𝐸𝑖 span a range of multiple orders of magnitude.
ampling uniformly will lead to an inadequate distribution and may
esult in reactions, which are either infinitely fast or will not start at
ll within the set boundaries. Thus, Eqs. (3) and (4) are used to limit
he parameter space to a problem oriented parameter subspace. Here,
he physical representation of the values 𝑟𝑖,𝑝 and 𝑇𝑖,𝑝 are the maximum

reaction rate of a single reaction per component and the respective
temperature at which it occurs. 𝑌𝑖 is the initial mass fraction of the
material’s component. [31–34]

𝐸𝑖 =
𝑅𝑇 2

𝑖,𝑝 exp(1)𝑟𝑖,𝑝
𝛽𝑌𝑖

(3)

𝐴𝑖 =
exp(1)𝑟𝑖,𝑝

𝑌𝑖
exp

(

𝐸𝑖
𝑅𝑇𝑖,𝑝

)

(4)

𝑟𝑖,𝑝, 𝑇𝑖,𝑝 and 𝑌𝑖 are randomly sampled with a uniform distribution.
With 𝑟𝑖,𝑝 and 𝑇𝑖,𝑝, the values for 𝐴𝑖 and 𝐸𝑖 are calculated using Eqs. (3)
nd (4) [31]. The boundaries for 𝑟𝑖,𝑝 and 𝑇𝑖,𝑝 given in Table 1 cover

a broad range of values for commonly used real synthetic and natural
polymers [7]. Sampling with the boundaries stated in Tables 1 and 2
leads to a parameter subspace bordered by the black line displayed
in Fig. 1. By this, the parameter space is reduced to 16%, compared
to uniform sampling of ln(𝐴𝑖) and 𝐸𝑖, using their maximum values as
pper boundaries. Any parameter combination that would be located
utside of the marked area will react either completely in less than the
hosen minimal time step or will not lead to any reaction at all within
he chosen boundary conditions. The colours show the distribution of
he samples in this subspace. Regions with higher sampling frequency
re displayed in yellow, regions with lower frequencies are displayed
n green, fading to blue.

Then, for the heating rate 𝛽1...𝛽4, the temperature dependent mass
oss rate 𝑟(𝑇 ) is calculated with the given parameters using Eqs. (1) and
2).

Each dataset D𝑛 consists of 𝑁𝑢 elements, where one element 𝑢 con-
ains 𝐴𝑢 ,… , 𝐴𝑢, 𝐸𝑢,… , 𝐸𝑢, 𝑌 𝑢,… , 𝑌 𝑢 and 𝐿𝑢 , 𝐿𝑢 , 𝐿𝑢 , 𝐿𝑢 . Every 𝐿𝑢 =
1 𝑛 1 𝑛 1 𝑛 𝛽1 𝛽2 𝛽3 𝛽4 𝛽𝑙
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Table 1
Sampling range boundaries for peak reaction rate and temperature.

Parameter Lower Boundary Upper Boundary

𝑇𝑖,𝑝 100 °C 500 °C
𝑟𝑖,𝑝 1 ⋅ 10−4 s−1 1 ⋅ 10−2 s−1

Table 2
Sampling range boundaries and values for initial component fractions.

Parameter n=1 n=2 n=3

𝑌1 1 0...1 0...1
𝑌2 – 1 − 𝑌1 0...𝑌1
𝑌3 – – 1 − 𝑌1 − 𝑌2

Fig. 1. Resulting parameter subspace from Eqs. (3) and (4) and the parameter ranges
from Table 1. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 3
Generated datasets.

Dataset Dataset size Components Heating Rates
D𝑛 𝑁𝑢 𝑛 𝛽𝑙/ (K/min)

D1 6.4 ⋅ 106 1 5, 10, 30, 40
D2 6.4 ⋅ 106 2 5, 10, 30, 40
D3 6.4 ⋅ 106 3 5, 10, 30, 40

{𝑟(20 °C),… , 𝑟(550 °C)} is a set of discrete values calculated from Eq. (2)
for a range from 20 °C to 550 °C with a 𝛥𝑇 = 2 K and a heating rate 𝛽𝑙
given in Table 3. This leads to 𝑚 = 266 discrete data points for each 𝐿𝑢

𝛽𝑙
.

The properties of the three generated datasets are specified in Table 3.
The Dataset size was limited by computational and memory capacities.
Effects of this limitation are taken into consideration in Section 3.5.

As an example, a random dataset element for each number of com-
ponents 𝑛 is shown in Fig. 2. In the datasets, combinations of completely
and partly overlapping peaks as well as completely separated curves for
different components are present. For creating the data sets, standard
python modules where used. The code is publicly available [35–37].

2.3. Inverse model

2.3.1. General model introduction
The forward model described in Section 2.1 to calculate the reaction

rate 𝑟(𝑇 ) with activation energy 𝐸𝑖, pre-exponential factor 𝐴𝑖, and
material fractions 𝑌𝑖 as input parameters can be summarised in general
as in Eq. (5).

𝑓 (𝐴1,… , 𝐴𝑛, 𝐸1,… , 𝐸𝑛, 𝑌1,… , 𝑌𝑛) = (𝐿𝑢
𝛽1
, 𝐿𝑢

𝛽2
, 𝐿𝑢

𝛽3
, 𝐿𝑢

𝛽4
) (5)

Since only 𝑟(𝑇 ) is easy to measure directly with experiments like
TGA and 𝐴 and 𝐸 are unknown and needed for forward modelling,
3

𝑖 𝑖
Table 4
Subsets build from initial datasets.

Dataset

D1,2,3 = D2⋅106
1 ∪ D2⋅106

2 ∪ D2⋅106
3

D1,2,3,𝑡𝑟𝑎𝑖𝑛 ⊆ D1,2,3 , |D1,2,3,𝑡𝑟𝑎𝑖𝑛| = 4.5 ⋅ 106

D1,2,3,𝑡𝑒𝑠𝑡 = D1,2,3 ⧵ D1,2,3,𝑡𝑟𝑎𝑖𝑛

D2,𝑔𝑎𝑢𝑠𝑠 ⊆ D2 , |D2| = 0.5 ⋅ 106

D3,𝑔𝑎𝑢𝑠𝑠 ⊆ D3 , |D3| = 0.5 ⋅ 106

D1,𝑡𝑟𝑎𝑖𝑛 ⊆ D6⋅106
1 , |D1,𝑡𝑟𝑎𝑖𝑛| = 4.5 ⋅ 106

D1,𝑡𝑒𝑠𝑡 = D6⋅106
1 ⧵ D1,𝑡𝑟𝑎𝑖𝑛

D2,𝑡𝑟𝑎𝑖𝑛 ⊆ D6⋅106
2 , |D2,𝑡𝑟𝑎𝑖𝑛| = 4.5 ⋅ 106

D2,𝑡𝑒𝑠𝑡 = D6⋅106
2 ⧵ D2,𝑡𝑟𝑎𝑖𝑛

D3,𝑡𝑟𝑎𝑖𝑛 ⊆ D6⋅106
3 , |D3,𝑡𝑟𝑎𝑖𝑛| = 4.5 ⋅ 106

D3,𝑡𝑒𝑠𝑡 = D6⋅106
3 ⧵ D3,𝑡𝑟𝑎𝑖𝑛

D1,2,3,𝑒𝑣𝑎𝑙 ⊆ (D1 ∪ D2 ∪ D3) ⧵ D1,2,3 , |D1,2,3,𝑒𝑣𝑎𝑙| = 1.5 ⋅ 105

an inverse surrogate model to predict these parameters 𝐴̂𝑖, 𝐸̂𝑖 and 𝑌𝑖
from the reaction rate 𝑟𝑖(𝑇 ) can be formulated. The resulting inverse
surrogate model is displayed in Eq. (6).

𝑔(𝐿𝑢
𝛽1
, 𝐿𝑢

𝛽2
, 𝐿𝑢

𝛽3
, 𝐿𝑢

𝛽4
) = (𝐴̂1,… , 𝐴̂𝑛, 𝐸̂1,… , 𝐸̂𝑛, 𝑌1,… , 𝑌𝑛) (6)

To build such an inverse model, a machine learning method called
extremely randomized trees (ERT) is used. This algorithm, adapted
from the random forests algorithm [38], is a decision tree based method
for supervised classification and regression problems [26]. It was cho-
sen because it outperformed other ensemble learning algorithms in
image classification [39] and gene network inference [40,41] and was
shown to perform well on multi-target regression [42]. It is easy to use
in a parallel computing environment like high performance computing
clusters, gives a robust model, does not tend to overfit and is efficient
on huge datasets [26,43,44]. ERT can pretty well interpolate in the
parameter space that was used for training but has limitations on ex-
trapolating outside the parameter space used for training [44]. The ERT
was used as implemented in SciKit-Learn [45]. A detailed explanation
on ERT is given in Appendix.

2.3.2. Dataset description
Eq. (7) shows the complete dataset, which generation was described

in Section 2.2. Here, each 𝑥𝑢 is the input value and 𝑦𝑢 is the correspond-
ing output value. Subsets of the initial datasets described in Table 3
are build for training and testing the individual submodels described
in Sections 2.3.3 to 2.3.7. The composition of these subsets is given in
Table 4. Here, the superscript defines a subset with elements from 1
to the value of the superscript for 𝑢 from the original set. If only the
cardinality is given, it describes the number of random elements from
the original set.

D𝑛 = {(𝑥𝑢, 𝑦𝑢) ∶ 𝑢 = 1,… , 𝑁𝑢} (7)

2.3.3. Prediction concept
The training data is used to train the ERT model by providing the

inputs and outputs from the samples. The ERT model adopts according
to the provided training dataset during the training process and builds a
forest of random decision trees. During the prediction process different
combinations of the datasets are used as explained in the correspondent
subsections.

There are three different types of predictions to be made. The
number of components 𝑛̂, the component’s fractions 𝑌 and the reaction
kinetic parameters 𝐴̂ and 𝐸̂ need to be predicted. Thus, the prediction
process is split up in three submodels as shown in Fig. 3. First, an ERT
classification model is trained, tested and applied to predict the number
of independent reactions taking place, which equals to the number
of components 𝑛. Then, a Gaussian curve fitting model is applied to
predict the initial fractions 𝑌𝑖 of each component 𝑖. Individual model
parts are built for materials consisting of two and three components.



Fire Safety Journal 136 (2023) 103744P. Lauer et al.

l

o

Fig. 2. Random examples for the generated reaction rates, with (a) 1 component, (b) 2 components and (c) 3 components.
Table 5
Generated submodels.

No. Submodel name Type Input 𝑥 Output 𝑦̂

1 Number of components Classification 𝐿𝑢
𝛽1
, 𝐿𝑢

𝛽2
, 𝐿𝑢

𝛽3
, 𝐿𝑢

𝛽4
𝑛̂

2 Fraction of components Gaussian fitting 𝐿𝑢
𝛽1
, 𝐿𝑢

𝛽2
, 𝐿𝑢

𝛽3
, 𝐿𝑢

𝛽4
𝑌1 ,… , 𝑌𝑛

3 Reaction kinetics Regression 𝐿𝑢
𝛽1
, 𝐿𝑢

𝛽2
, 𝐿𝑢

𝛽3
, 𝐿𝑢

𝛽4
, 𝑌1 ,… , 𝑌𝑛 𝐴̂1 ,… , 𝐴̂𝑛 , 𝐸̂1 ,… , 𝐸̂𝑛
2
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There is no need to predict the fraction of materials consisting of
only one component, since it equals always to 1. Finally, an ERT
regression model is utilised to predict the actual reaction kinetics,
with an individual part for each number of components. These three
submodels are sequentially applied. An overview of input and output
quantities is given in Table 5.

On each of the submodels and on the complete model, several
performance and error metrics are applied in a multi-fitness approach.
They are described in the respective subsections [46]

2.3.4. Prediction of number of components submodel
In the first submodel, an ERT classifier is used to predict if the inves-

tigated process consists of one, two or three individual components. For
this, there are subsets created from each D𝑛, with 𝑁𝑢 of 2 ⋅106 samples,
eading to a new dataset D1,2,3 with a total of 6 ⋅106 samples. Here, each
𝑥𝑢 =

(

𝐿𝑢
𝛽1
, 𝐿𝑢

𝛽2
, 𝐿𝑢

𝛽3
, 𝐿𝑢

𝛽4

)

is the input value and 𝑦𝑢 = 𝑛 is the expected
utput value for training, while 𝑦̂𝑢 = 𝑛̂ is the predicted classification.

D1,2,3 is split up into a training dataset D1,2,3,𝑡𝑟𝑎𝑖𝑛, containing 75%
of D1,2,3 and a testing dataset D1,2,3,𝑡𝑒𝑠𝑡, containing the other 25%.
D1,2,3,𝑡𝑟𝑎𝑖𝑛 is used to train the classifier, while D1,2,3,𝑡𝑒𝑠𝑡 is used to test
the model by predicting 𝑦̂𝑢 from 𝑥𝑢 and comparing it to the given
𝑦𝑢. Evaluation metrics for this comparison are accuracy 𝐴𝑐 (correct
predictions in relation to all predictions, Eq. (8)), precision 𝑃𝑟 (ratio
of correct positive predicted values to all positive values, Eq. (9)) and
recall 𝑅𝑒 (probability that an input is correctly assigned as belonging
to a certain number of reactions, Eq. (10)). These metrics are applied
to any individual number of components 𝑛 as well as an average over
all 𝑛. For cross validation of the training dataset, a 𝑘-fold strategy with
𝑘 = 5 is used. Here, the data is split into 𝑘 parts, where all combinations
of 𝑘− 1 parts are used for training and then the remaining part is used
for testing [47].

Accuracy: 𝐴𝑐 = correct classifications
all classifications (8)

Precision: 𝑃𝑟 =
true positives

true positives + false positives (9)

Recall: 𝑅𝑒 =
true positives (10)
4

true positives + false negatives
.3.5. Prediction of component fractions submodel
The second submodel is used to predict the initial fractions of

ifferent components present in the material. For this, a Gaussian fitting
odel is used for materials consisting of two and three components.

f the material consists only of one component, the fraction of the
omponent is one. Gaussian curves in the form given by Eq. (11) with
arameters 𝜇𝑖, the position of the peak value, 𝐾𝑖, the peak value and 𝜎2𝑖 ,
he variance, of each corresponding component 𝑖 are fitted to the mass
oss rate curves in the test data. The number of curves that are fitted to
he data is equal to the number of components prescribed or predicted
n the step before. For each component, three parameters need to be
itted. Generic, non-linear least squares routines with a trust region
eflective algorithm [48] as implemented in [49] were applied to find
he parameters of each of the Gaussian curves. In each iteration of these
outines, a set of the parameters 𝛾 = {𝜇1,… , 𝜇𝑛, 𝐾1,… , 𝐾𝑖, 𝜎21 … , 𝜎2𝑛}
re estimated, 𝑝(𝑧, 𝛾) with 𝑧 = (20...550) is calculated and the squared
rror between 𝑦 and 𝑝(𝑧, 𝛾) is determined. Then, iteratively, this error
s reduced by optimising 𝛾 with a trust region reflective algorithm.

(𝑧, 𝛾) =
𝑛
∑

𝑖=1
𝐾𝑖 ⋅

1

𝜎𝑖
√

2𝜋
exp

(

−1
2
(𝑥 − 𝜇𝑖)2

𝜎2𝑖

)

(11)

A fitting example is shown in Fig. 4. On the left, the mass loss
rate from a TGA experiment at an arbitrary heating rate of a material
consisting of three components is shown. The plot on the right side
presents the resulting Gaussian curves fitted to the individual peaks and
the surfaces 𝑆1, 𝑆2 and 𝑆3 that are enclosed by each Gaussian curve.

As input values, 𝑥𝑢 =
(

𝐿𝑢
𝛽1
, 𝐿𝑢

𝛽2
, 𝐿𝑢

𝛽3
, 𝐿𝑢

𝛽4

)

from the datasets D2,𝑔𝑎𝑢𝑠𝑠
and D3,𝑔𝑎𝑢𝑠𝑠 are used. The component fractions are calculated for each
heating rate individually and then their mean is calculated. 𝑦𝑢 =
𝑌 𝑢
1 ,… , 𝑌 𝑢

𝑛 is the true output value for validation, while 𝑦̂𝑢 = 𝑌 𝑢
1 ,… , 𝑌 𝑢

𝑛 is
he predicted value. For evaluation, the root mean square error (RMSE)
s calculated according to Eq. (12) between 𝑦𝑢 and 𝑦̂𝑢 [50].

RMSE(𝑦𝑢, 𝑦̂𝑢) = 1
√

𝑛

√

√

√

√

𝑛
∑

𝑖=1
(𝑌 𝑢

𝑖 − 𝑌 𝑢
𝑖 )2 (12)

2.3.6. Prediction of reaction kinetics submodel
The third submodel predicts the actual reaction kinetics. Individual
ERT regression models are built for materials consisting of one, two and
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Fig. 3. Concept of the inverse surrogate model.

Fig. 4. Example of the component fractions’ prediction.
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Table 6
Values of hyperparameter study.

No. submodel N𝑢 Number of estimators Maximum depth
106

1 Number of 1.5, 2.25, 50, 100, 1000, 1500, 1, 5, 10, 50,
components 4.5, 6 2000, 3000, 5000 100, 1064

3 Reaction kinetics 0.1, 0.75, 1, 50, 100, 200 1, 5, 10, 50, 1064
1.5, 3, 6
three components. For each number of components 𝑛 with 𝑛 ∈ {1, 2, 3},
a separate model is built. D𝑛,𝑡𝑟𝑎𝑖𝑛 is used for training and D𝑛,𝑡𝑒𝑠𝑡 is
used for testing the model. The datasets are composed as described
in Table 4. Here, each 𝑥𝑢 =

(

𝐿𝑢
𝛽1
, 𝐿𝑢

𝛽2
, 𝐿𝑢

𝛽3
, 𝐿𝑢

𝛽4
, 𝑌 𝑢

1 ,… , 𝑌 𝑢
𝑛

)

is the input
value and 𝑦𝑢 = 𝐴𝑢

1,… , 𝐴𝑢
𝑛, 𝐸

𝑢
1 ,… , 𝐸𝑢

𝑛 is the expected output. The model
predicts 𝑦̂𝑢 = 𝐴̂𝑢

1,… , 𝐴̂𝑢
𝑛, 𝐸̂

𝑢
1 ,… , 𝐸̂𝑢

𝑛 .
The evaluation criterion is the 𝑅2 score as shown in Eq. (13). The

mean value and the distribution of values are used for evaluation. The
test data D𝑛,𝑡𝑒𝑠𝑡 is used to determine the accuracy of the trained ERT
model.

𝑅2(𝑦𝑢, 𝑦̂𝑢) =
⎡

⎢

⎢

⎣

𝑛
∑

𝑖=1

⎛

⎜

⎜

⎝

1 −
∑𝑁𝑢

𝑢=1(𝐴
𝑢
𝑖 − 𝐴̂𝑢

𝑖 )
2

∑𝑁𝑢
𝑢=1(𝐴

𝑢
𝑖 − 𝐴̄𝑢)2

⎞

⎟

⎟

⎠

+
𝑛
∑

𝑖=1

⎛

⎜

⎜

⎝

1 −
∑𝑁𝑢

𝑢=1(𝐸
𝑢
𝑖 − 𝐸̂𝑢

𝑖 )
2

∑𝑁𝑢
𝑢=1(𝐸

𝑢
𝑖 − 𝐸̄𝑢)2

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

∕2𝑛

(13)

𝑦̂𝑢, predicted with the inverse model from input 𝑥𝑢, is used to
calculate 𝑥̂𝑢 from Eqs. (1) and (2) for evaluation. Then, 𝑥̂𝑢 and 𝑥𝑢

are compared by calculating the normalised root mean square error
(NRMSE) according to Eq. (14). Median value and distribution of values
are used for evaluation. A 5-fold cross validation as in the first model
is also conducted here.

NRMSE(𝑥𝑢, 𝑥̂𝑢) = 1

(𝑥𝑢𝑚𝑎𝑥 − 𝑥𝑢𝑚𝑖𝑛)
√

4𝑚

√

√

√

√

4𝑚
∑

𝑡=1
(𝑥̂𝑢𝑡 − 𝑥𝑢𝑡 )2 (14)

2.3.7. Complete model
After the submodels are evaluated individually, a final evalua-

tion, i.e. the combination of all three submodels as shown in Fig. 3,
is conducted. The dataset D1,2,3,𝑒𝑣𝑎𝑙 is fed to the complete model
with 𝑥𝑢 =

(

𝐿𝑢
𝛽1
, 𝐿𝑢

𝛽2
, 𝐿𝑢

𝛽3
, 𝐿𝑢

𝛽4

)

as the input and as the expected out-
ut 𝑦𝑢 = 𝐴1,… , 𝐴𝑛, 𝐸1,… , 𝐸𝑛, 𝑌1,… , 𝑌𝑛. This dataset only contains

data that was not used to build any of the submodels. Then, 𝑦̂𝑢 =
𝐴̂1,… , 𝐴̂𝑛, 𝐸̂1,… , 𝐸̂𝑛, 𝑌1,… , 𝑌𝑛 is predicted by the model and used to
calculate 𝑥̂𝑢 from Eqs. (1) and (2). 𝑥̂𝑢 and 𝑥𝑢 are used to calculate the
NRMSE according to Eq. (14). To encounter possible misallocation, the
best NRMSE for any order in 𝑦̂ is used. Mean value and distribution of
values are used for evaluation. In addition, the 𝑅2 score for 𝑦𝑢 and 𝑦̂𝑢

is used to evaluate the model.

2.3.8. Hyperparameter tuning
The ERT algorithm has algorithmic parameters that are used to

adjust the learning process; these parameters will be referred as hy-
perparameters. Studies for the best settings for these hyperparameters
for the submodels were conducted.

For the number of components submodel, using an ERT classifier,
the hyperparameters considered as most sensitive in literature are the
training dataset size, the number of estimators (number of trees in the
forest) and the maximum depth of a single tree [26,51]. The same is
true for the reaction kinetics submodel. The fraction of components
submodel has no hyperparameters to tune. Hyperparameters are eval-
uated one at a time, ceteris paribus. Their values are shown in Table 6.
Results for the operating submodels in Section 3 are only presented for
the parameters underlined in this table. Except for one value, where
next to no change in outcome by increasing this value was observed,
only the upper boundaries of the hyperparameter studies were chosen.
6

Table 7
Evaluation values for first submodel.

Components Accuracy (%) Precision (%) Recall (%)

𝑛 = 1 99.97 98.73 99.97
𝑛 = 2 96.60 83.09 96.60
𝑛 = 3 80.27 97.29 80.27
total 92.28 93.04 92.28

2.3.9. Real case application
For real case application evaluation, TGA experimental data of black

Polymethylmethacrylate (PMMA) is used. The data is taken from exper-
iments conducted by the University of Lille published in context of the
Measurement and Computation of Fire Phenomena Condensed Phase
Working Group (MaCFP) [52]. The mass loss rates from experiments
conducted with four different heating rates (5 K/min, 10 K/min, 20
K/min, 50 K/min) is used as input for the inverse model to predict the
reaction kinetics. From the publicly available total mass over time, the
relative mass loss rate (in s−1) is calculated and smoothed by calculating
the moving average over 10 data points. Then, the data is downsampled
with linear interpolation to 266 evenly distributed mass loss rate input
values for a temperature range from 20 °C to 550 °C per heating rate.

Since the previously presented model is designed for a different
set of experimental heating rates, an adjusted model equivalent to the
presented process was built and used. Except for the training dataset
generated for heating rates of 5 K/min, 10 K/min, 20 K/min, 50 K/min,
anything else is the same as explained before.

For comparison, NRMSE between the experimental and predicted
mass loss rates is calculated. Another indicator is the peak mass loss
rate and the corresponding temperature found by other laboratories
contributing to the MaCFP group. They estimated the reaction kinetic
parameters for the same black PMMA that was used to gain the ex-
perimental data utilised here with different methods and experiments.
With the estimated reaction kinetic parameters, TGA experiments with
heating rates of 10 K/min and 100 K/min are modelled and the peak
mass loss rate and the corresponding temperature is compared [53,54].

3. Results

3.1. Prediction of number of components

A dataset D1,2,3,𝑡𝑒𝑠𝑡 of 1.5 ⋅ 106 samples in total, 0.5 ⋅ 106 samples
each for one, two and three components, was used to evaluate the
performance of the classifier to predict the number of components from
a given mass loss rate over temperature curve. Table 7 shows the accu-
racy, precision and recall in total and for each subset. With 92.28%,
93.04% and 92.28%, accuracy, precision and recall are each above
90%. Fig. 5 shows a confusion matrix. It gives the ratio between the
number of predicted values 𝑦̂𝑢 and true values 𝑦𝑢 for each category and
is normalised over the true values 𝑦𝑢. It can be seen that materials with
one component are classified correctly with 100% probability, as well
as materials with two components are classified correctly with 97%
probability. Materials with three components are classified correctly
with 80% probability, while 20% of reactions with three components
are misclassified as reactions with two components. 5-fold cross valida-
tion leads to an average accuracy of 92.28% (standard deviation (SD):
1.91 ⋅ 10−4).
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Fig. 5. Confusion matrix with relative fraction of prediction for first submodel.

Fig. 6. Feature importance for input 𝑥 of first submodel.

Fig. 6 shows the relative impurity-based input feature importance
n the first submodel as a measure for how important a feature is
o the prediction. The bars give the summed feature importance for
𝛽1 ,… , 𝐿𝛽4 with error bars showing the standard deviation of the single

eatures.

.2. Prediction of fraction of components

Fig. 7 shows histograms for both of the two components fractions
rediction submodels, i.e. for two and three components. On the 𝑥-axis

is the NRMSE between 𝑦𝑢 and 𝑦̂𝑢 of the respective dataset D𝑛,𝑔𝑎𝑢𝑠𝑠, with
𝑛, number of components, separated in 100 bins, equally distributed
on a log scale. The test sets D𝑛,𝑡𝑒𝑠𝑡 have each 0.5 ⋅ 106 elements. On the
𝑦-axis there is the relative frequency at which these values occur. The
green bars display the relative frequency of each bin and the blue line
shows the cumulative distribution.

In Fig. 7(a), prediction of the fraction of two components, 70% of
all predictions are in the bins with a RMSE below 0.0032 and 95% have
a RMSE below 0.18. The 𝑅2 score between 𝑦 and 𝑦̂ is 0.75.

In Fig. 7(b), prediction of the fraction of three components, 70%
are in the bins with a RMSE below 0.034 and 95% have a RMSE below
0.18. Here, the 𝑅2 score equals to 0.63.

3.3. Prediction of reaction kinetics

Figs. 8 to 10 show histograms for each of the three reaction kinetics
7

prediction submodels, i.e. for one, two and three components. On the
Fig. 7. Histograms of RMSE between 𝑦 and 𝑦̂ for materials with (a) two components
and (b) three components. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 8
70th and 95th percentiles for NRMSE(𝑥, 𝑥̂) for the three reaction kinetic submodels.

Submodel NRMSE NRMSE
70th percentile 95th percentile

1 Component 2.5⋅10−6 0.12⋅10−3
2 Components 0.0965 0.163
3 Components 0.132 0.206

Table 9
𝑅2(𝑦, 𝑦̂) and cross validation results for the three reaction kinetic submodels.

Submodel 𝑅2 score 𝑅2 mean ± 𝜎
5-fold Cross Validation

1 Component 1.0000 1.0000(0)
2 Components 0.9392 0.9408(2)
3 Components 0.5560 0.5588(3)

log scale 𝑥-axis is the NRMSE between 𝑥𝑢 and 𝑥̂𝑢 of the respective
dataset D𝑛,𝑡𝑒𝑠𝑡 with 𝑛, number of components, separated in 100 equally
distributed bins. The test sets D𝑛,𝑡𝑒𝑠𝑡 have each 1.5 ⋅106 elements. On the
𝑦-axis there is the relative frequency at which these values occur. The
green bars display the relative frequency of each bin and the blue line
shows the cumulative distribution.

Table 8 gives the 70th and 95th percentiles for NRMSE(𝑥, 𝑥̂) for the
three reaction kinetic submodels. Table 9 gives the 𝑅2 scores and the
results from 5-fold cross validation.
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Fig. 8. Histogram of fitness between 𝑥 and 𝑥̂ for materials with one component, third
submodel. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 9. Histogram of NRMSE fitness between 𝑥 and 𝑥̂ for materials with two com-
ponents, third submodel. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 10. Histogram of fitness between 𝑥 and 𝑥̂ for materials with three components,
third submodel. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Results for the prediction of reaction kinetic parameters for two
and three components came to two oppositional outcomes at different
hyperparameter settings. A model consisting of only a single estimator,
which reduces the model to a simple decision tree model, showed not
the behaviour expected from literature studies. Here, NRMSE(𝑥𝑢, 𝑥̂𝑢)
8

f

Fig. 11. Histogram of NRMSE fitness between 𝑥 and 𝑥̂ for materials with two and
three components, third submodel.

was lower than in any other configuration, The 𝑅2 score for this config-
uration was the poorest of any model, which was expected. Increasing
the number of estimators in the models leads to improvement of the 𝑅2

score, but slight disimprovement of the NRMSE(𝑥𝑢, 𝑥̂𝑢). Consequently,
both results are presented in Fig. 11 and discussed briefly in Section 4.
The 𝑅2 score for 𝑦𝑢 and 𝑦̂𝑢 in the submodel with only one estimator is
0.7682 with a 5-fold cross validation average of 0.7735 (SD: 5.24 ⋅10−3)
or two components and −0.0672 with a 5-fold cross validation average
f −0.0624 (SD: 2.09 ⋅ 10−3) for three components.

Fig. 12 shows the relative input feature importance in all submodels.
he bars give the summed feature importance for 𝐿𝛽1 ,… , 𝐿𝛽4 with
rror bars showing the standard deviation of the single features and
he values for 𝑌1,… , 𝑌3.

.4. Complete model prediction

The results from the prediction for the complete model as shown
n Fig. 3 are presented in this section. A dataset D1,2,3,𝑒𝑣𝑎𝑙, consisting

of 1.5 ⋅ 105 elements was used to evaluate the complete model. It
s a combination of three times 0.5 ⋅ 105 samples, each for materials
onsisting of one, two and three components. The overall 𝑅2(𝑦, 𝑦̂) for
he test dataset is 0.77. A breakdown of this overall 𝑅2 score is shown
n Table 10. The table displays individual 𝑅2 scores for each number
f components 𝑛 and each group of parameters 𝐴𝑖, 𝐸𝑖 and 𝑌𝑖.

Figs. 13 to 15 show a histogram of the true 𝑦 vs. predicted 𝑦̂ value
or each of the nine parameters. Here, anything on the diagonal from
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Fig. 12. Feature importance for input 𝑥 of third submodel.

Table 10
𝑅2 scores for individual parameters and number of components.

Parameter 𝑛 = 1 𝑛 = 2 𝑛 = 3 total

𝐴𝑖 1 0.90 0.24
𝐸𝑖 1 0.91 0.31
𝑌𝑖 – 0.77 0.56
total 1 0.86 0.37 0.77

the origin is an ideal prediction. For bins above the diagonal line,
predictions are higher than the true values and for bins below the
diagonal line, predictions are lower than the true values. Values of each
dataset are sorted by descending material’s component fraction. This
means, that 𝑌1 ≥ 𝑌2 ≥ 𝑌3. Bins with a count of less than five are omitted
or visual clarity. Fig. 13 shows a histogram of the values for 𝐴𝑖 and
𝐴̂𝑖. For first and second component, most of the predictions are on the
diagonal, while a similar, but less distinct result can be observed for
the third component. The same accounts for the true values 𝐸𝑖 vs. the
redicted values 𝐸̂𝑖, displayed in Fig. 14.

Fig. 15 shows a histogram for the true 𝑌𝑖 vs. the predicted 𝑌𝑖. Here,
for all three cases, there is a strong diagonal line visible. There also
occurs scattering throughout the parameter space. Note, that here in
one third of all cases 𝑌1 equals to 1, since one third of the cases have
only one component. This might distort the optical impression of the
distribution, since there is only one yellow dot in the first plot at (1, 1).

Fig. 16 shows a histogram of the NRMSE between the true 𝑥
and the predicted 𝑥̂ calculated from the predicted 𝑦̂ for the complete
prediction model. On the 𝑥-axis is the NRMSE between 𝑥𝑢 and 𝑥̂𝑢 of
the dataset D1,2,3,𝑒𝑣𝑎𝑙, separated in 100 equally distributed bins. The test
set D1,2,3,𝑒𝑣𝑎𝑙 has 150000 elements. On the 𝑦-axis there is the relative
frequency at that these fitness values occur. The orange, green and
red bars display the relative frequency of each bin, broken up into
the number of components in the true values. The blue line shows
the cumulative distribution. 50% of the results have a NRMSE below
0.0429, while 95% have a NRMSE of below 0.147.

For a better visualisation of the implications of the NRMSE, Fig. 17
shows the mass loss rates for the 5th, 50th and 95th percentile of the
distribution shown in Fig. 16. The true value 𝑥 for all four heating
rates is shown as a solid line while the predicted value 𝑥̂ is shown as a
dashed line. The rows are broken down to the number of components.
For 𝑛 = 1, there is no difference between the true and predicted values.
For 𝑛 = 2, differences between the true and the predicted values can be
observed for the 50th and 95th percentile. For 𝑛 = 3, differences for all
percentiles can be observed.

3.5. Hyperparameter tuning

Hyperparameter tuning was conducted for the first and the third
submodel. The second submodel does not have any hyperparame-
9

ters. For the number of components prediction submodel, results are
Table 11
Values from model prediction for PMMA.

Parameter Component 1 Component 2

ln(𝐴𝑖)∕s−1 57.958 29.478
𝐸𝑖∕(Jmol−1) 250.527 × 103 176.876 × 103

𝑌𝑖 0.032 0.968

presented in Fig. 18 and results for the reaction kinetics prediction
submodel in Fig. 19.

Fig. 18 shows the influence of the hyperparameters dataset size,
maximum tree depth and number of trees on the accuracy of the
number of components prediction submodel determined with the test
dataset. It shows that the dataset size and the number of trees in the
model have more pronounced influence in the considered intervals. A
four fold increase of dataset size from 1.5 million sets to 6 million
sets increases the accuracy by 0.026 from 0.897 to 0.923. The increase
of the maximum tree depth continuously increases the accuracy value
up to a maximum tree depth of 100, where the maximum tree depth
converges to the maximum accuracy. A hundredfold increase in the
number of trees increases accuracy by 0.008.

Fig. 19 shows the influence of the hyperparameters dataset size,
maximum tree depth and number of trees on the 𝑅2 score of the
kinetic parameter prediction submodels for two and three components,
determined with the test dataset. A hyperparameter study for the
kinetic parameter prediction of one component was not conducted,
because a single decision tree already reached a 𝑅2 score of 0.9999999.
The 𝑅2 score increases from 0.70 to 0.94 for the two components
prediction and from 0.36 to 0.56 for the three components prediction
with increasing dataset size from 0.1 million sets to 6 million sets. For
a maximum tree depth, 𝑅2 rises from 0.07 to 0.94 and from 0.04 to
0.56 respectively, with maximum tree depth values from 1 to 50. The
𝑅2 for changing the number of trees from 1 to 200 changes from 0.07
to 0.94 and from −0.07 to 0.56 for the respective model.

3.6. Real case application

Based on the experimental data from MaCFP, the model predicted
that the PMMA decomposition can be described with two compo-
nents, each undergoing a first order reaction. The related components
fractions and reaction kinetic parameters are displayed in Table 11.
These parameters are used to model TGA experiments and compare the
modelled mass loss rates to the original experimental data. The mass
loss rates for experimental and predicted values for the four different
heating rates is shown in Fig. 20. A NRMSE between experimental and
modelled mass loss rate data of 0.0468 is calculated.

In another comparison, peak mass loss rate values and the tem-
peratures at that they occur from predictions of the presented inverse
model are compared to the mean of predictions made by contributors
of the MaCFP working group. The mean values are calculated from
16 contributions. In Table 12, the peak mass loss rate values and
the temperatures at that they occur are displayed for modelled TGA
experiments with heating rates of 10 𝐾∕min and 100 𝐾∕min. [53,54]

4. Discussion

4.1. Submodels

It was shown in Fig. 5 that the prediction of the number of com-
ponents works exceptionally well for materials consisting of one and
two components. These were classified correctly with only minor noise.
While only 80% of the materials consisting of three materials where
classified correctly as materials with three components, it is likely that
a majority of the 20% of the materials misclassified as materials with
two components can reasonably well be modelled as materials with two
components due to exactly overlapping peaks in reaction rates [30].
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Fig. 13. Model results: predicted vs. true values for 𝐴𝑖.

Fig. 14. Model results: predicted vs. true values for 𝐸𝑖.

Fig. 15. Model results: predicted vs. true values for 𝑌𝑖. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 12
Peak value comparison for mass loss rates from TGA experiment and from predicted reaction kinetic parameters.

Parameter Heating rate Model prediction MaCFP Mean ±2𝝈

𝑟𝑝𝑒𝑎𝑘∕(mg s−1) 10 K/min 0.0172 0.0152±0.0030
𝑇𝑝𝑒𝑎𝑘/K 10 K/min 622.6 635.6±15.8
𝑟𝑝𝑒𝑎𝑘∕(mg s−1) 100 K/min 0.152 0.130±0.038
𝑇𝑝𝑒𝑎𝑘/K 100 K/min 664.8 673.5±40.8
Fig. 16. Histogram of fitness between 𝑥 and 𝑥̂, complete model. (For interpretation of
he references to colour in this figure legend, the reader is referred to the web version
f this article.)

he importance of the input features, here 𝐿𝛽1 ,… , 𝐿𝛽4 is uniformly
distributed, as shown in Fig. 6. It can be summarised that this submodel
works well for the intended application.

The prediction of the fractions of the components with a Gaussian
fitting model can be evaluated with the histograms in Figs. 7(a) and
7(b). In both figures, a distribution with two peaks can be observed.
In both models are groups with a fit at around 10−3 covering about
70% (two components) and 50% (three components) of the results. A
second peak at around 10−1 covers about 30% (two components) and
50% (three components) of the results. Resulting 𝑅2 scores of 0.75 and
0.63 for two and three components lead to a moderate but still usable
result as can be seen in the overall model.

The submodel predicting reaction kinetic parameters for materials
consisting of only one component works ideal. In Fig. 8, two peaks for
the NRMSE between 𝑥 and 𝑥̂ can be observed. One peak covers roughly
70% of the results lie below 10−16, which implies a perfect fit with
noise introduced through the precision of the used datatype (double-
precision floating-point). The other peak, covering roughly 30% of the
results, shows actual divergence, but this divergence is small that is
still negligible. For two components, the prediction is not as good as
for one component, but is still reaching a 𝑅2 score of 0.94 for the
200 estimator model comparing 𝑦 and 𝑦̂. Fig. 9 confirms this outcome
for a comparison between 𝑥 and 𝑥̂. The model for three components
nly reaches a 𝑅2 score of 0.56 for 𝑦 and 𝑦̂ in the 200 estimator

model. Fig. 10 illustrates that the fit between 𝑥 and 𝑥̂ is not as good
s in the models for one and two components. The feature importance
or all three models as given in Fig. 12 shows that the importance
f 𝐿𝛽1 ,… , 𝐿𝛽4 for predicting reaction kinetics of materials consisting
f two and three components is close to uniform distribution with
light accentuation on 𝐿𝛽1 . The submodel for only one component
hows significant non-uniform distribution, that is a result of only a
ingle decision tree used in this model. This also explains the higher
tandard deviation shown. The summed relative feature importance of
he estimated fractions 𝑌𝑛 is 0.087 for two components and 0.095 for
hree components.

The contradictory results for the two and three components sub-
odels shown in Fig. 11, where a single decision tree only seems to

each better results comparing 𝑥 and 𝑥̂ but way worse results comparing
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𝑦 and 𝑦̂ could be explained by the kinetic compensation effect where
different values for kinetic parameters lead to similar reaction rate
profile [55,56].

Almost all submodels yielded a standard deviation below 10−3 in
the 5-fold cross validation for 𝑅2 scores between 𝑦 and 𝑦̂. Exceptions
are the models predicting reaction kinetics for two and three com-
ponents with only one estimator, where the standard deviation was
below 2.3 ⋅ 10−3. This shows that the partition into training and
testing datasets did not have any significant influence on the model
performance.

4.2. Complete model

The overall model reaches a 𝑅2 score of 0.77. Score breakdown
in Table 10 shows that the prediction for materials consisting of one
component works almost ideal. The prediction of the actual kinetic
parameters for materials consisting of two components works also
well, but less than in the evaluation of the single submodel due to
inaccurate prediction of the yields of components. The same pattern
can be seen for predicting kinetic parameters for materials consisting
of three components. Here, it shows an even higher impact compared
to the particular submodel due to the influence of misclassification of
the number of components and inaccurate prediction of the yields of
components.

These results are also visualised in Figs. 13 to 15, where the true vs.
predicted values are plotted as a 2d histogram. In all plots except for
the third components 𝐴3 and 𝐸3, the highest density is on the diagonal
line, which represents an ideal prediction.

In the histogram shown in Fig. 16, comparing the fit between 𝑥
and 𝑥̂, it can be seen that more than one third of the calculations
have a fit that counts in the lowest bin. This mostly is an effect of the
materials consisting of only one component. The results for materials
with two and three components are represented by the rest of this
distribution. Evaluating the distribution of results further as shown
in Fig. 17 confirms this. Predictions for materials consisting of one
component almost always fit perfectly to the true values. Predictions for
materials consisting of two components are distributed from an almost
perfect match to results that reproduce the general mass loss profile but
are slightly shifted in peak temperatures or peak mass loss rates. This
is even more true for materials consisting of three components. Here,
the results are also distributed from an almost perfect fit to deviations
in position and height of peaks.

In this model, several submodels are linked in sequence and in
parallel. Since different error metrics are applied, the error propaga-
tion is not calculated directly. To assess the error propagation, the
single submodel performance and error metrics can be compared to
the performance and error metrics of the complete model. Also, the
error propagation can be traced semi-quantitatively. The wrong clas-
sifications from the first submodel propagate to the second submodel
directly. This can be quantified by the precision shown in Table 10,
calculating the true positives of one class to all classifications into this
class. Then, the error propagates further from the second submodel
to the third submodel. The estimations from the second submodel
represent only 2 of 1066 input features (two components) respectively
3 of 1067 input features (three components) of the third submodel.
To quantify the influence on the prediction of the third submodel, the
relative feature importance can be evaluated, which is 0.087 for two

components and 0.095 for three components.
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Fig. 17. Mass loss rates of (a) 5th, (b) 50th and (c) 95th NRMSE percentile for 𝑛 = 1, 𝑛 = 2 and 𝑛 = 3.
Since the presented approach utilises a huge dataset of synthetically
experiments and other approaches mainly focus on a limited set of real
or synthetically produced experiments, a general quantitative compar-
ison to other approaches for the complete inverse surrogate model is
not feasible. Though, what can be made is an evaluation of individual
results, which is done in Section 4.4 and qualitative comparison to
other approaches. The presented approach is capable of qualitatively
reaching at least about the same level of accuracy comparing the
experimental and predicted TGA mass loss rate curves to selected other
methods in several cases [57–59]. Although, in certain cases, especially
if more components are involved, the model fails to make precise
predictions.
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The main advantage of this approach over other methods is the com-
bination of getting results instantly for TGA experiments with multiple
heating rates on materials that can be described as consisting of up
to three components. Other methods are missing at least one of these
three properties. They are either computational expensive, work only
on well separated pathways or can only make use of TGA experiments
with a single heating rate at a time. A disadvantage of the presented
approach is, in some cases the results are either slightly deviated in
position and height of peaks or do not fit at all. But due to using an
inverse pretrained surrogate model, the computational costs are way
less expensive than any other method that combines the advantages of

this approach and it can be implemented as a first step in estimating
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Fig. 18. Hyperparameters for number of components prediction submodel.
Fig. 19. Hyperparameters for kinetic parameter prediction submodel.
Fig. 20. Mass loss rates from TGA experiment and from predicted reaction kinetic parameters.
reaction kinetic parameters. If the initial estimation of this approach is
already good, further investigation with e.g. an inverse metaheuristic
optimisation approach can be waived. Else, if the results slightly deviate
from the experiment, these reaction kinetic parameters can be used as
an initial guess for the inverse metaheuristic optimisation approach and
could reduce computational costs compared to a random initial guess.
13
A common counter argument against using inverse modelling meth-
ods in pyrolysis modelling in general and especially applying such
machine learning methods, is that the inverse surrogate model cannot
be verified as it is acting as a black box and the model results cannot
be validated. Using this ERT approach, once a model is trained, it acts
deterministic, i.e. a given input value will always produce the same
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output. Even the pathways along the decision trees can be traced to
comprehend why a given input leads to a certain output. This is a
step towards explainable machine learning models [60]. To validate
the output of the surrogate model, i.e. the reaction kinetic parameters
𝑦̂, they can be used to simulate the exact same TGA experiments that
were used as the input for the inverse surrogate model with a direct
pyrolysis model of choice. Calculating the mass loss rate in the simu-
lation, the direct model output 𝑥̂ and the experimental values 𝑥 can be
compared. Furthermore, with additional TGA experiments for different
heating rates other than the ones used in training the surrogate model,
the extrapolation capacities of the reaction kinetic parameters can be
evaluated. Though, this means, a set of reaction kinetic parameters
are always effective model parameters only validated to the specific
combination of experimental setup and the direct pyrolysis model used
for validation. But this is true for any other approach as well.

4.3. Hyperparameter tuning

The hyperparameter study showed for all evaluated set ups and
all investigated hyperparameters a positive correlation between the
investigated parameter and the resulting 𝑅2 score as shown in Figs. 18
and 19. For all cases with parameter values greater than 1, the 𝑅2

score showed an improvement with increasing parameter values but
the improvement slowed down with increasing parameter values.

The fraction of components prediction model reacted most sensitive
on maximum tree depth in the considered boundaries. Only from a
maximum tree depth of 100 it started to converge and only slightly
increased by 0.003 in 𝑅2 score at a maximum depth level of 200.
Dataset size and number of trees did not had a huge influence and only
slightly improved by increasing size from values of 50 and above.

The kinetic parameter prediction model also showed to be most
sensitive to the maximum tree depth number, increasing from 1 to 50
resulting in a 𝑅2 score rise from 0.07 to 0.94 for the two component
model and from 0.04 to 0.56 for the three component model with no
significant rise afterwards. From a dataset size of 1.5 million, a slow
rise for both submodels was observed. While values for just a single
estimator were low, only slight improvement was reached raising the
number of estimators from 50 to 200.

4.4. Real case application

In a real case application, the presented inverse surrogate model was
evaluated with TGA experiment data for black PMMA. The mass loss
rates calculated from the predicted parameters show good agreement
with the experimental data with a NRMSE of 0.0468. The peak mass
loss rates of the prediction are slightly higher and occur at slightly
lower temperatures than in the real TGA experiments (Fig. 20). Com-
pared to predictions other groups found with different methods on the
same material, the predictions of the presented model for peak mass
loss rates and temperatures, at that they occur, lie well within the mean
±2𝜎 range of results other groups found (Table 12).

5. Conclusions

In this contribution, a novel method to predict reaction kinetic
parameters from TGA experiments was presented and evaluated. An in-
verse surrogate model utilising ensemble learning techniques as a novel
method is used for prediction. The model is based on an extremely
randomized trees algorithm and a Gaussian curve fitting algorithm. It
consists of three submodels. The first submodel predicts the number of
components the material consists of, the second submodel predicts the
fraction of each component and the third submodel predicts the actual
kinetic parameters for each component.

Evaluation of the model demonstrated that it can predict reaction
kinetic parameters from TGA experiments with an overall 𝑅2 score of
14

0.77. While it performed best on materials consisting of one component,
it still performed good on materials with two components and least
good on materials with three components. The submodel predicting
the number of components in the examined material shows strongest
results. The prediction of the fractions of the single components has
appeared as the least accurate of the model, compared to the other
parameters that the model predicted.

An example real case application of TGA experiment data of PMMA
showed that predictions both fit to the experimental data and are
in good agreement with predictions other groups made for the same
material.

The inverse surrogate model is able to predict reaction kinetic
parameters that can directly be used for further modelling in most
of the cases. In cases where the prediction is not sufficient for direct
further use, the values can be used as a starting point for different
conventional strategies like metaheuristic optimisation.

Leading to almost instant results, even if they might not be exact, is
one of the biggest benefits of this inverse surrogate model. The combi-
nation of this feature with the ability to use TGA experiments with four
different heating rates and the capability of predicting reaction kinetic
parameters of up to three components makes this approach unique.

While this presented inverse surrogate model has certain limitations
in model complexity, the general concept is capable of considering
higher model complexity. The presented approach is limited to a max-
imum of three parallel first-order reactions. This was chosen to not
exceed common computational resources. The training data can be
extended for more complex reaction networks with any number of 𝑛th
order reactions and residue resulting from charring and then can be
used to build an inverse surrogate model capable of more complex
reactions. The presented inverse surrogate model already can handle
materials that are producing residual mass fractions, when the experi-
mental input data is preprocessed with a normalisation step that takes
the residual mass fraction into account.

Since the code for this approach is open source and modular, parts
or the whole method can easily integrated into other approaches.

With the ability to validate the results by using the estimated param-
eters to predict the experimental values and the limitations highlighted
before, the model in the current state best would be used complemen-
tary to other methods. Further refinement and reinforcement of the
model is needed, before it can be used as a main method to predict
reaction kinetic parameters. Most efficiently, the second submodel
should be revised, since it has the weakest performance compared to
the other submodels. The whole model will improve if the error of
the second submodel decreases and subsequently reduces the error
of the total model, especially through error propagation. Automated
deconvolution analysis would be a good starting point [17]. Increasing
the training data set size in combination with limiting the boundaries
closer to common values seems also a promising way to achieve better
performance in all of the three submodels. The next step would be a
statistical analysis to evaluate if there are specific nodes in the random
forests that are a common reason for failed predictions.

Future work will include studies to better justify and quantify the
selection of the used distribution and boundary values for dataset
generation and to understand the influence of the kinetic compensation
effect on the model. Another point will be the improvement of the
submodel that predicts the fractions of the components. Different ma-
chine learning algorithms, e.g. neural networks, for the first and third
submodel, will be evaluated as well. Due to the modular conception
of the proposed method, this is possible with a reasonable amount
of time. The influence of using synthetic and real experimental data
gained through microscale combustion calorimetry (MCC) [61] needs
to be investigated. While TGA data gives temperature resolved mass
information, MCC data gives temperature resolved heat of combustion
information. The results of the inverse surrogate model would benefit
from using training data gained through MCC, either as sole input or
combined with TGA data. The general structure of the surrogate model

allows such investigation.
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Fig. 21. Random example for a decision tree used in ERT algorithm.
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Appendix. Extremely randomized trees

Extremely randomized trees [26] (ERT) is an ensemble learning
method derived from the random forests method [38] and follows a
supervised learning approach. It can be used for classification and re-
gression tasks. Ensemble learning methods rely on the idea of building
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n

a prediction model as a combination of a collection of more basic
models [64].

Random forests act on this principle by building a plethora of
decision trees by a specified set of rules from a training data set which
contains the input as well as the expected output. With the trained
prediction model, each of the decision trees transforms an input to an
output prediction. The final result is determined by a majority vote
out of the aggregated individual decision tree results. In regression
tasks, the arithmetic average is used [65]. With averaging the results,
a random forest can combine the advantages of a single decision tree
(universal approximation, robustness to outliers, linear computational
complexity, robustness to irrelevant and redundant inputs and good
interpretability) with a reduction of its main disadvantage, high vari-
ance [51]. A prediction model built with ERT works the same in terms
of how a final result from several decision trees is achieved, but differs
on how these single decision trees are constructed. This leads to a
significant improvement in precision and to a reduced computational
complexity [51]. To comprehend these techniques that are used by ERT
to build a decision tree, lets imagine a trivial example. A set of two
input values (features) {𝑥1, 𝑥2} shall be classified in one of the three
lasses 𝐴, 𝐵 and 𝐶. 𝑥1 and 𝑥2 are randomly assigned with values of
ither 0 or 1. The output classes represent the sum of 𝑥1 and 𝑥2. 𝐴 is
or 𝑥1 + 𝑥2 = 0, 𝐵 is for 𝑥1 + 𝑥2 = 1 and C for 𝑥1 + 𝑥2 = 2.

For training an ERT model, 10000 random sets of {𝑥1, 𝑥2} were gen-
rated and the output class was calculated. Fig. 21 shows an exemplary
andom decision tree for this classification task. This whole exemplary
RT model consists of 100 of these decision trees. The decision making
s started from the top and yields a result at the bottom. Both of the
wo upper levels represents a decision taken upon one of the values of
he features. Starting in the first node with the decision, if 𝑥2 of the
iven input is smaller or equal to 0.18. If this is true, the left path is
aken, else the right path. The ‘‘gini’’ impurity is a criterion for the
uality of the split and ideally should be minimal. It is the probability
f an incorrect classification of a random sample. ‘‘Samples’’ gives the
umber of samples of the training set were considered in this node and

‘value’’ gives the number of how many of the samples are either in class
, 𝐵 or 𝐶. If the decision in this node is true, the decision in the next
ode is based on 𝑥 ≤ 0.95. The bottom level gives the prediction of the
1

http://zenodo.org


Fire Safety Journal 136 (2023) 103744P. Lauer et al.
model, where each letter represents one class. The final output of the
complete model is determined by a majority vote out of the aggregated
individual decision tree results.

In context of prediction of the number of components in this contri-
bution, the input 𝑥 is the mass loss rate and the output classes are the
number of components (either 1, 2 or 3) predicted for an input.

The technique to build this decision tree that is particular to ERT is
the random split generation. For each node a set of randomly chosen
features with random splitting points are evaluated and the one with
the best result, i.e. at this classification task the lowest gini impurity, is
used for this node. The size of the set can be adjusted as anything from
one (completely random tree) to the number of features. Suggestion by
the authors of the original paper is for classification models the square
root of the number of features and for regression models the number
of features [26].

Two further important parameters are the number of decision trees
a forest consists of and the number of minimum samples in a node.
The latter correlates to the maximum depth of a tree, which was
considered as hyperparameter to investigate in this contribution. The
optimal values for these two parameters are problem specific and can
be determined by hyperparameter studies.
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