000972117 001__ 972117
000972117 005__ 20240712112901.0
000972117 0247_ $$2doi$$a10.1021/acs.energyfuels.2c03296
000972117 0247_ $$2ISSN$$a0887-0624
000972117 0247_ $$2ISSN$$a1520-5029
000972117 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-01079
000972117 0247_ $$2WOS$$aWOS:000925002500001
000972117 037__ $$aFZJ-2023-01079
000972117 082__ $$a660
000972117 1001_ $$0P:(DE-HGF)0$$aFleitmann, Lorenz$$b0
000972117 245__ $$aMolecular Design of Fuels for Maximum Spark-Ignition Engine Efficiency by Combining Predictive Thermodynamics and Machine Learning
000972117 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2023
000972117 3367_ $$2DRIVER$$aarticle
000972117 3367_ $$2DataCite$$aOutput Types/Journal article
000972117 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706075498_6905
000972117 3367_ $$2BibTeX$$aARTICLE
000972117 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000972117 3367_ $$00$$2EndNote$$aJournal Article
000972117 520__ $$aCo-design of alternative fuels and future spark-ignition (SI) engines allows very high engine efficiencies to be achieved. To tailor the fuel’s molecular structure to the needs of SI engines with very high compression ratios, computer-aided molecular design (CAMD) of renewable fuels has received considerable attention over the past decade. To date, CAMD for fuels is typically performed by computationally screening the physicochemical properties of single molecules against property targets. However, achievable SI engine efficiency is the result of the combined effect of various fuel properties, and molecules should not be discarded because of individual unfavorable properties that can be compensated for. Therefore, we present an optimization-based fuel design method directly targeting SI engine efficiency as the objective function. Specifically, we employ an empirical model to assess the achievable relative engine efficiency increase compared to conventional RON95 gasoline for each candidate fuel as a function of fuel properties. For this purpose, we integrate the automated prediction of various fuel properties into the fuel design method: Thermodynamic properties are calculated by COSMO-RS; combustion properties, indicators for environment, health and safety, and synthesizability are predicted using machine learning models. The method is applied to design pure-component fuels and binary ethanol-containing fuel blends. The optimal pure-component fuel tert-butyl formate is predicted to yield a relative efficiency increase of approximately 8% and the optimal fuel blend with ethanol and 3,4-dimethyl-3-propan-2-yl-1-pentene of 19%.
000972117 536__ $$0G:(DE-HGF)POF4-1121$$a1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)$$cPOF4-112$$fPOF IV$$x0
000972117 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000972117 7001_ $$0P:(DE-HGF)0$$aAckermann, Philipp$$b1
000972117 7001_ $$0P:(DE-HGF)0$$aSchilling, Johannes$$b2
000972117 7001_ $$0P:(DE-HGF)0$$aKleinekorte, Johanna$$b3
000972117 7001_ $$0P:(DE-HGF)0$$aRittig, Jan G.$$b4
000972117 7001_ $$0P:(DE-HGF)0$$avom Lehn, Florian$$b5
000972117 7001_ $$0P:(DE-HGF)0$$aSchweidtmann, Artur M.$$b6
000972117 7001_ $$0P:(DE-HGF)0$$aPitsch, Heinz$$b7
000972117 7001_ $$0P:(DE-HGF)0$$aLeonhard, Kai$$b8
000972117 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b9$$ufzj
000972117 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b10
000972117 7001_ $$0P:(DE-Juel1)172097$$aDahmen, Manuel$$b11$$eCorresponding author$$ufzj
000972117 773__ $$0PERI:(DE-600)1483539-3$$a10.1021/acs.energyfuels.2c03296$$gp. acs.energyfuels.2c03296$$n3$$p2213–2229$$tEnergy & fuels$$v37$$x0887-0624$$y2023
000972117 8564_ $$uhttps://juser.fz-juelich.de/record/972117/files/acs.energyfuels.2c03296.pdf$$yOpenAccess
000972117 8767_ $$d2023-02-01$$eHybrid-OA$$jPublish and Read$$zACS
000972117 909CO $$ooai:juser.fz-juelich.de:972117$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000972117 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000972117 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a ETH Zurich$$b0
000972117 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000972117 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a ETH Zurich$$b2
000972117 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000972117 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b4$$kRWTH
000972117 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b5$$kRWTH
000972117 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b6$$kRWTH
000972117 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a TU Delft$$b6
000972117 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b7$$kRWTH
000972117 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b8$$kRWTH
000972117 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b9$$kFZJ
000972117 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b9$$kRWTH
000972117 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b10$$kFZJ
000972117 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172023$$a ETH Zurich$$b10
000972117 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172097$$aForschungszentrum Jülich$$b11$$kFZJ
000972117 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1121$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
000972117 9141_ $$y2023
000972117 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000972117 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000972117 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-26
000972117 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000972117 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-26
000972117 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
000972117 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERG FUEL : 2022$$d2023-10-21
000972117 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000972117 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000972117 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000972117 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000972117 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-21
000972117 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bENERG FUEL : 2022$$d2023-10-21
000972117 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000972117 9801_ $$aAPC
000972117 9801_ $$aFullTexts
000972117 980__ $$ajournal
000972117 980__ $$aVDB
000972117 980__ $$aUNRESTRICTED
000972117 980__ $$aI:(DE-Juel1)IEK-10-20170217
000972117 980__ $$aAPC
000972117 981__ $$aI:(DE-Juel1)ICE-1-20170217