001     972117
005     20240712112901.0
024 7 _ |a 10.1021/acs.energyfuels.2c03296
|2 doi
024 7 _ |a 0887-0624
|2 ISSN
024 7 _ |a 1520-5029
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-01079
|2 datacite_doi
024 7 _ |a WOS:000925002500001
|2 WOS
037 _ _ |a FZJ-2023-01079
082 _ _ |a 660
100 1 _ |a Fleitmann, Lorenz
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Molecular Design of Fuels for Maximum Spark-Ignition Engine Efficiency by Combining Predictive Thermodynamics and Machine Learning
260 _ _ |a Columbus, Ohio
|c 2023
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1706075498_6905
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Co-design of alternative fuels and future spark-ignition (SI) engines allows very high engine efficiencies to be achieved. To tailor the fuel’s molecular structure to the needs of SI engines with very high compression ratios, computer-aided molecular design (CAMD) of renewable fuels has received considerable attention over the past decade. To date, CAMD for fuels is typically performed by computationally screening the physicochemical properties of single molecules against property targets. However, achievable SI engine efficiency is the result of the combined effect of various fuel properties, and molecules should not be discarded because of individual unfavorable properties that can be compensated for. Therefore, we present an optimization-based fuel design method directly targeting SI engine efficiency as the objective function. Specifically, we employ an empirical model to assess the achievable relative engine efficiency increase compared to conventional RON95 gasoline for each candidate fuel as a function of fuel properties. For this purpose, we integrate the automated prediction of various fuel properties into the fuel design method: Thermodynamic properties are calculated by COSMO-RS; combustion properties, indicators for environment, health and safety, and synthesizability are predicted using machine learning models. The method is applied to design pure-component fuels and binary ethanol-containing fuel blends. The optimal pure-component fuel tert-butyl formate is predicted to yield a relative efficiency increase of approximately 8% and the optimal fuel blend with ethanol and 3,4-dimethyl-3-propan-2-yl-1-pentene of 19%.
536 _ _ |a 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)
|0 G:(DE-HGF)POF4-1121
|c POF4-112
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ackermann, Philipp
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schilling, Johannes
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kleinekorte, Johanna
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Rittig, Jan G.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a vom Lehn, Florian
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Schweidtmann, Artur M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Pitsch, Heinz
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Leonhard, Kai
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 9
|u fzj
700 1 _ |a Bardow, André
|0 P:(DE-Juel1)172023
|b 10
700 1 _ |a Dahmen, Manuel
|0 P:(DE-Juel1)172097
|b 11
|e Corresponding author
|u fzj
773 _ _ |a 10.1021/acs.energyfuels.2c03296
|g p. acs.energyfuels.2c03296
|0 PERI:(DE-600)1483539-3
|n 3
|p 2213–2229
|t Energy & fuels
|v 37
|y 2023
|x 0887-0624
856 4 _ |u https://juser.fz-juelich.de/record/972117/files/acs.energyfuels.2c03296.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:972117
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a ETH Zurich
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a ETH Zurich
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-HGF)0
910 1 _ |a TU Delft
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 7
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 9
|6 P:(DE-Juel1)172025
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)172023
910 1 _ |a ETH Zurich
|0 I:(DE-HGF)0
|b 10
|6 P:(DE-Juel1)172023
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)172097
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1121
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-26
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERG FUEL : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-21
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ENERG FUEL : 2022
|d 2023-10-21
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21